题目:
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给你 n ,请计算 F(n) 。
示例 1:
输入:2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
输入:3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
0 <= n <= 30
思路一:
使用动态规划
找到初始值和公式的迭代方式
以及最后的返回值
注意指针不要越界就可
class Solution {
public int fib(int n) {
if(n==0) return 0;
int []a=new int[n+1];
a[0]=0;
a[1]=1;
for(int i=2;i<=n;i++){
a[i]=a[i-1]+a[i-2];
}
return a[n];
}
}
思路二:
同样也是动态规划
只不过这种方式是滚动数组
class Solution {
public int fib(int n) {
if (n < 2) {
return n;
}
int p = 0, q = 0, r = 1;
for (int i = 2; i <= n; ++i) {
p = q;
q = r;
r = p + q;
}
return r;
}
}