1062 最简分数 (20 分)
一个分数一般写成两个整数相除的形式:N/M,其中 M 不为0。最简分数是指分子和分母没有公约数的分数表示形式。
现给定两个不相等的正分数 N1/M1 和 N2/M2,要求你按从小到大的顺序列出它们之间分母为 K 的最简分数。
输入格式:
输入在一行中按 N/M 的格式给出两个正分数,随后是一个正整数分母 K,其间以空格分隔。题目保证给出的所有整数都不超过 1000。
输出格式:
在一行中按 N/M 的格式列出两个给定分数之间分母为 K 的所有最简分数,按从小到大的顺序,其间以 1 个空格分隔。行首尾不得有多余空格。题目保证至少有 1 个输出。
输入样例:
7/18 13/20 12
输出样例:
5/12 7/12
没有看懂这题。7/18化成5/12,但是7/18 = 0.38 ,5/12 = 0.416;化简之后怎么值都不相等了。。。
#define _CRT_SECURE_NO_WARNINGS #include <iostream> using namespace std; //最大公约数 int gcd(int a, int b) { return b == 0 ? a : gcd(b, a % b); } int main() { //读入数据 int n1, m1, n2, m2, k; scanf("%d/%d %d/%d %d", &n1, &m1, &n2, &m2, &k); // 若 n1/m1 > n2*m2,交换,保证 n1/m1 <= n2*m2 if (n1 * m2 > n2 * m1) { swap(n1, n2); swap(m1, m2); } int num = 1; bool flag = false; //flag控制输出空格 while (n1 * k >= m1 * num) num++; while (n1 * k < m1 * num && m2 * num < n2 * k) { if (gcd(num, k) == 1) { printf("%s%d/%d", flag == true ? " " : "", num, k); flag = true; } num++; } return 0; }