一、647. 回文子串
中等
给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。
回文字符串 是正着读和倒过来读一样的字符串。
子字符串 是字符串中的由连续字符组成的一个序列。
具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
示例 1:
输入:s = “abc”
输出:3
解释:三个回文子串: “a”, “b”, “c”
示例 2:
输入:s = “aaa”
输出:6
解释:6个回文子串: “a”, “a”, “a”, “aa”, “aa”, “aaa”
动规五部曲:
1、确定dp数组(dp table)以及下标的含义
布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
2、确定递推公式
在确定递推公式时,就要分析如下几种情况。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
1、下标i与下标j相同,同一个字符a,一定是回文串
2、下标i与下标j相差1,例如aa,一定是回文串
3、下标i与下标j相差大于1,例如cabac,此时s[i]与s[j]相等
需要查看i到j区间是不是回文子串就看aba是不是回文就可以,那么aba的区间就是i+1,j-1区间
这个区间是不是回文串就看dp[i+1][j-1]是否为True
以上三种情况分析完了,那么递归公式如下:
3、dp数组如何初始化
dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。
所以dp[i][j]初始化为false。
4、确定遍历顺序
遍历顺序可有有点讲究了。
首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。
class Solution:
def countSubstrings(self, s: str) -> int:
dp = [[False] * len(s) for _ in range(len(s))]
result = 0
for i in range(len(s)-1, -1, -1): #注意遍历顺序
for j in range(i, len(s)):
if s[i] == s[j]:
if j - i <= 1: #情况一 和 情况二
result += 1
dp[i][j] = True
elif dp[i+1][j-1]: #情况三
result += 1
dp[i][j] = True
return result
r = Solution()
s = "aaa"
print(r.countSubString(s))
二、516. 最长回文子序列
中等
给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。
子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
示例 1:
输入:s = “bbbab”
输出:4
解释:一个可能的最长回文子序列为 “bbbb” 。
示例 2:
输入:s = “cbbd”
输出:2
解释:一个可能的最长回文子序列为 “bb” 。
思路:动态规划
dp[i][j]从i到j位置的子序列的最大回文长度
dp[i][j]=1
if s[i]==s[j],dp[i][j]=dp[i+1][j-1]+2
else dp[i][j]=max(dp[i+1][j],dp[i][j-1])
dp[i][j]和他左下角,坐标、下面,三个dp值相关,所以行循环i需要逆序,列需要顺序
class Solution2:
def longest(self,s):
n=len(s)
dp=[[0]*n for _ in range(n)]
for i in range(n-1,-1,-1):
dp[i][i]= 1
for j in range(i+1,n):
if s[i]==s[j]:
dp[i][j]=dp[i+1][j-1]+2
else:
dp[i][j]=max(dp[i+1][j],dp[i][j-1])
return dp[0][n-1]
res=Solution2()
s = "bbbab"
print(res.longest(s))