今天上午,在课程中,我们讨论了利率制定中可观察和不可观察异质性之间的区别(从经济角度出发)。为了说明这一点,我们看了以下简单示例。让 X 代表一个人的身高。考虑以下数据集
> Davis[12,c(2,3)]=Davis[12,c(3,2)]
在这里,关注变量是给定人的身高,
> X=Davis$height
如果我们看直方图,我们有
> hist(X,col="light green", border="white",proba=TRUE,xlab="",main="")
我们可以假设我们具有高斯分布吗?
在这里,如果我们拟合高斯分布,将其绘制出来,并添加基于核的估计量,我们将得到
> (param <- fitdistr(X,"normal")$estimate) > f1 <- function(x) dnorm(x,param[1],param[2]) > x=seq(100,210,by=.2) > lines(x,f1(x),lty=2,col="red") > lines(density(X))
如果看那条黑线,可能会想到一种混合分布,例如
当我们有一个获得混合分布不可观察的异质性因子:概率 p1,一个随机变量 ,概率p2,一个随机变量 。我们可以使用例如
> (param12 <- c(mix$lambda[1],mix$mu,mix$sigma)) [1] 0.4002202 178.4997298 165.2703616 6.3561363 5.9460023
如果我们绘制两个高斯分布的混合图,我们得到
> lines(x,f2(x),lwd=2, col="red") lines(density(X))
不错。实际上,我们可以尝试使用自己的代码最大限度地提高可能性,
> bvec <- c(0,-1,0,0) > constrOptim(c(.5,160,180,10,10), logL, NULL, ui = Amat, ci = bvec)$par [1] 0.5996263 165.2690084 178.4991624 5.9447675 6.3564746
在这里,我们包括一些约束,以保证概率属于单位间隔,并且方差参数保持正值。
进一步来说,如果我们假设基础分布具有相同的方差,即
在这种情况下,我们必须使用之前的代码,并进行一些小的更改,
> (param12c= constrOptim(c(.5,160,180,10), logL, NULL, ui = Amat, ci = bvec)$par) [1] 0.6319105 165.6142824 179.0623954 6.1072614
如果我们不能观察到异质性因素,这就是我们可以做的。我们实际上在数据集中有一些信息。例如,我们具有人的性别。现在,如果我们查看每个性别的身高直方图,以及基于内核的每个性别的身高密度估计量,
因此,看起来男性的身高和女性的身高是不同的。也许我们可以使用实际观察到的变量来解释样本中的异质性。在形式上,这里的想法是考虑具有可观察到的异质性因素的混合分布:性别,
现在,我们对以前称为类[1]和[2]的解释是:男性和女性。在这里,估算参数非常简单,
sex=="F" mean sd 164.714286 5.633808 sex=="M" mean sd 178.011364 6.404001
如果我们绘制密度,我们有
> lines(x,f4(x),lwd=3,col="blue")
如果再次假设相同的方差怎么办?即,模型变为
然后,一个自然的想法是根据以前的计算得出方差的估计量
> s [1] 6.015068
再一次,可以绘制相关的密度,
> lines(x,f5(x),lwd=3,col="blue")
现在,如果我们仔细考虑一下我们所做的事情,那仅仅是对一个因素(人的性别)的线性回归,
实际上,如果我们运行代码来估算此线性模型,
Residuals: Min 1Q Median 3Q Max -16.7143 -3.7143 -0.0114 4.2857 18.9886 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 164.7143 0.5684 289.80 <2e-16 *** sexM 13.2971 0.8569 15.52 <2e-16 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 6.015 on 198 degrees of freedom Multiple R-squared: 0.5488, Adjusted R-squared: 0.5465 F-statistic: 240.8 on 1 and 198 DF, p-value: < 2.2e-16
我们得到的均值和方差的估计与之前获得的估计相同。因此,正如今天上午在课堂上提到的,如果您有一个不可观察的异质性因子,我们可以使用混合模型来拟合分布,但是如果您可以得到该因子的替代,这是可观察的,则可以运行回归。