天翼云R语言知识文档专栏是天翼云为开发者提供的互联网技术内容平台。内容涵盖R语言相关内容资讯。开发者在R语言专栏是可以快速获取到自己感兴趣的技术内容,与其他开发者们学习交流,共同成长。
在Pavia University数据中选取100×100大小的影像和参考数据,选取30个样本作为训练样本,基于随机森林进行分类
自从Sims(1980)发表开创性的论文以来,向量自回归模型已经成为宏观经济研究中的关键工具。这篇文章介绍了VAR分析的基本概念,并指导了简单模型的估算过程。
在本文中,我们描述了灵活的竞争风险回归模型。回归模型被指定为转移概率,也就是竞争性风险设置中的累积发生率。
环境科学中的许多数据不适合简单的线性模型,最好用广义相加模型(GAM)来描述 。
Glmnet是一个通过惩罚最大似然关系拟合广义线性模型的软件包。正则化路径是针对正则化参数λ的值网格处的lasso或Elastic Net(弹性网络)惩罚值计算的 。
在最近的一篇文章中,我们展示了一个LSTM模型,通过假近邻(FNN)损失进行正则化,可以用来重建一个非线性动态系统。
在本文中,潜类别轨迹建模 (LCTM) 是流行病学中一种相对较新的方法,用于描述生命过程中的暴露,它将异质人群简化为同质模式或类别。然而,对于给定的数据集,可以根据类的数量、模型结构和轨迹属性得出不同模型的分数。
在讨论分类时,我们经常分析二维数据(一个自变量,一个因变量)。但在实际生活中,有更多的观察值,更多的解释变量。随着两个以上的解释变量,它开始变得更加复杂的可视化。
在本文中,潜类别轨迹建模 (LCTM) 是流行病学中一种相对较新的方法,用于描述生命过程中的暴露,它将异质人群简化为同质模式或类别。然而,对于给定的数据集,可以根据类的数量、模型结构和轨迹属性得出不同模型的分数。
最近我们被客户要求撰写关于信贷数据的研究报告,包括一些图形和统计输出。在本文中,我们使用了逻辑回归、决策树和随机森林模型来对信用数据集进行分类预测并比较了它们的性能。
冗余分析(redundancy analysis,RDA)是一种回归分析结合主成分分析的排序方法,也是多因变量(multiresponse)回归分析的拓展。从概念上讲,RDA是因变量矩阵与解释变量之间多元多重线性回归的拟合值矩阵的PCA分析。
一旦我们清理了我们的文本并进行了一些基本的词频分析,下一步就是了解文本中的观点或情感。这被认为是情感分析,本教程将引导你通过一个简单的方法来进行情感分析 。
在某些情况下,你可能希望通过在每帧中添加数据并保留先前添加的数据来进行动画处理。现在,我们将通过制作点线图的动画来探索。
R语言关于回归系数的解释
样条线是拟合非线性模型并从数据中学习非线性相互作用的一种方法。
R语言是一种功能强大的统计计算和图形化工具,特别适用于处理时间序列数据。本文将介绍如何使用R语言生成时间序列数据,并探讨一些常见的时间序列分析技术。
回归分析是统计学和数据科学中最常用的分析方法之一,特别是在预测和解释连续型变量之间关系方面具有重要作用。本文将详细介绍如何在R语言中进行连续型变量的回归分析与预测,涵盖数据准备、模型构建、诊断分析、模型选择、模型评估、以及预测等各个方面。
在这篇文章中,我将对多元线性回归使用block的Gibbs采样,得出block的Gibbs采样所需的条件后验分布。然后,对采样器进行编码,并使用模拟数据对其进行测试 。
文中本教程对多层_回归_模型进行了基本介绍 。
阈值模型用于统计的几个不同区域,而不仅仅是时间序列。一般的想法是,当变量的值超过某个阈值时,过程可能表现不同。也就是说,当值大于阈值时,可以应用不同的模型,而不是当它们低于阈值时。
2023-02-08 10:33:55
2023-02-08 10:33:55
2023-02-10 10:10:49
2023-02-07 10:34:04
2023-02-10 10:10:49
2023-02-10 05:50:35