一、 为什么要有动态内存分配
int val = 20;//在栈空间上开辟四个字节
char arr[10] = {0};//在栈空间上开辟10个字节的连续空间
- 空间开辟⼤⼩是固定的。
- 数组在申明的时候,必须指定数组的⻓度,数组空间⼀旦确定了⼤⼩不能调整 但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间⼤⼩在程序运⾏的时候才能知 道,那数组的编译时开辟空间的⽅式就不能满⾜了。
二、malloc和free
1、malloc
void* malloc (size_t size);
如果开辟成功,则返回⼀个指向开辟好空间的指针。
如果开辟失败,则返回⼀个 NULL 指针,因此malloc的返回值⼀定要做检查。
返回值的类型是 void* ,所以malloc函数并不知道开辟空间的类型,具体在使⽤的时候使⽤者⾃⼰来决定。
如果参数 size 为0,malloc的⾏为是标准是未定义的,取决于编译器。
2、free
void free (void* ptr);
- 如果参数 ptr 指向的空间不是动态开辟的,那free函数的⾏为是未定义的。
- 如果参数 ptr 是NULL指针,则函数什么事都不做。
- malloc和free都声明在 stdlib.h 头⽂件中。
#include <stdio.h>
#include <stdlib.h>
int main()
{
int num = 0;
scanf("%d", &num);
int arr[num] = { 0 };
int* ptr = NULL;
ptr = (int*)malloc(num * sizeof(int));
if (NULL != ptr)//判断ptr指针是否为空
{
int i = 0;
for (i = 0; i < num; i++)
{
*(ptr + i) = 0;
}
}
free(ptr);//释放ptr所指向的动态内存
ptr = NULL;//是否有必要?
return 0;
}
三、calloc和realloc
1、calloc
void* calloc (size_t num, size_t size);
- 函数的功能是为 num 个⼤⼩为 size 的元素开辟⼀块空间,并且把空间的每个字节初始化为0。
- 与函数 malloc 的区别只在于 calloc 会在返回地址之前把申请的空间的每个字节初始化为全 0。
#include <stdio.h>
#include <stdlib.h>
int main()
{
int* p = (int*)calloc(10, sizeof(int));
if (NULL != p)
{
int i = 0;
for (i = 0; i < 10; i++)
{
printf("%d ", *(p + i));
}
}
free(p);
p = NULL;
return 0;
}
0 0 0 0 0 0 0 0 0 0
2、realloc
- realloc函数的出现让动态内存管理更加灵活。
- 有时会我们发现过去申请的空间太⼩了,有时候我们⼜会觉得申请的空间过⼤了,那为了合理的使 ⽤内存,我们⼀定会对内存的⼤⼩做灵活的调整。那 realloc 函数就可以做到对动态开辟内存⼤⼩的调整。
void* realloc (void* ptr, size_t size);
ptr 是要调整的内存地址
size 调整之后新⼤⼩
返回值为调整之后的内存起始位置。
这个函数调整原内存空间⼤⼩的基础上,还会将原来内存中的数据移动到 新 的空间。
realloc在调整内存空间的是存在两种情况:
情况1:原有空间之后有⾜够⼤的空间
情况2:原有空间之后没有⾜够⼤的空间
情况1
当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发⽣变化。
情况2
当是情况2 的时候,原有空间之后没有⾜够多的空间时,扩展的⽅法是:在堆空间上另找⼀个合适⼤⼩的连续空间来使⽤。这样函数返回的是⼀个新的内存地址。
由于上述的两种情况,realloc函数的使⽤就要注意⼀些。
#include <stdio.h>
#include <stdlib.h>
int main()
{
int* ptr = (int*)malloc(100);
if (ptr != NULL)
{
//业务处理
}
else
{
return 1;
}
//扩展容量
//代码1 - 直接将realloc的返回值放到ptr中
ptr = (int*)realloc(ptr, 1000);//这样可以吗?(如果申请失败会如何?)
//代码2 - 先将realloc函数的返回值放在p中,不为NULL,在放ptr中
int* p = NULL;
p = realloc(ptr, 1000);
if (p != NULL)
{
ptr = p;
}
//业务处理
free(ptr);
return 0;
}
四、常⻅的动态内存的错误
1、对NULL指针的解引⽤操作
#include <climits>
void test()
{
int* p = (int*)malloc(INT_MAX / 4);
*p = 20;//如果p的值是NULL,就会有问题
free(p);
}
2、对动态开辟空间的越界访问
#include <cstddef>
#include <cstdlib>
void test()
{
int i = 0;
int* p = (int*)malloc(10 * sizeof(int));
if (NULL == p)
{
exit(EXIT_FAILURE);
}
for (i = 0; i <= 10; i++)
{
*(p + i) = i;//当i是10的时候越界访问
}
free(p);
}
3、对⾮动态开辟内存使⽤free释放
void test()
{
int a = 10;
int* p = &a;
free(p);//ok?
}
4、使⽤free释放⼀块动态开辟内存的⼀部分
void test()
{
int *p = (int *)malloc(100);
p++;
free(p);//p不再指向动态内存的起始位置
}
5、对同⼀块动态内存多次释放
void test()
{
int* p = (int*)malloc(100);
free(p);
free(p);//重复释放
}
6、动态开辟内存忘记释放(内存泄漏)
#include <cstddef>
void test()
{
int* p = (int*)malloc(100);
if (NULL != p)
{
*p = 20;
}
}
int main()
{
test();
while (1);
}
忘记释放不再使⽤的动态开辟的空间会造成内存泄漏。
切记:动态开辟的空间⼀定要释放,并且正确释放。
五、动态内存经典笔试题分析
1、 题⽬1:
#include <cstddef>
void GetMemory(char* p)
{
p = (char*)malloc(100);
}
void Test(void)
{
char* str = NULL;
GetMemory(str);
strcpy(str, "hello world");
printf(str);
}
2、 题⽬2:
#include <cstddef>
char* GetMemory(void)
{
char p[] = "hello world";
return p;
}
void Test(void)
{
char* str = NULL;
str = GetMemory();
printf(str);
}
3、题⽬3:
#include <cstddef>
void GetMemory(char** p, int num)
{
*p = (char*)malloc(num);
}
void Test(void)
{
char* str = NULL;
GetMemory(&str, 100);
strcpy(str, "hello");
printf(str);
}
4、 题⽬4:
#include <cstddef>
void Test(void)
{
char* str = (char*)malloc(100);
strcpy(str, "hello");
free(str);
if (str != NULL)
{
strcpy(str, "world");
printf(str);
}
}
六、柔性数组
也许你从来没有听说过柔性数组(flexible array)这个概念,但是它确实是存在的。
C99 中,结构中的最后⼀个元素允许是未知⼤⼩的数组,这就叫做『柔性数组』成员。
struct st_type
{
int i;
int a[0];//柔性数组成员
};
struct st_type
{
int i;
int a[];//柔性数组成员
};
1、柔性数组的特点:
- 结构中的柔性数组成员前⾯必须⾄少⼀个其他成员。
- sizeof 返回的这种结构⼤⼩不包括柔性数组的内存。
- 包含柔性数组成员的结构⽤malloc ()函数进⾏内存的动态分配,并且分配的内存应该⼤于结构的⼤⼩,以适应柔性数组的预期⼤⼩。
例如:
typedef struct st_type
{
int i;
int a[0];//柔性数组成员
}type_a;
int main()
{
printf("%d\n", sizeof(type_a));//输出的是4
return 0;
}
2、柔性数组的使⽤
//代码1
#include <stdio.h>
#include <stdlib.h>
int main()
{
int i = 0;
type_a* p = (type_a*);malloc(sizeof(type_a) + 100 * sizeof(int));
//业务处理
p->i = 100;
for (i = 0; i < 100; i++)
{
p->a[i] = i;
}
free(p);
return 0;
}
3、柔性数组的优势
//代码2
#include <stdio.h>
#include <stdlib.h>
typedef struct st_type
{
int i;
int* p_a;
}type_a;
int main()
{
type_a* p = (type_a*)malloc(sizeof(type_a));
p->i = 100;
p->p_a = (int*)malloc(p->i * sizeof(int));
//业务处理
for (i = 0; i < 100; i++)
{
p->p_a[i] = i;
}
//释放空间
free(p->p_a);
p->p_a = NULL;
free(p);
p = NULL;
return 0;
}
第⼀个好处是:⽅便内存释放
如果我们的代码是在⼀个给别⼈⽤的函数中,你在⾥⾯做了⼆次内存分配,并把整个结构体返回给⽤⼾。⽤⼾调⽤free可以释放结构体,但是⽤⼾并不知道这个结构体内的成员也需要free,所以你不能指望⽤⼾来发现这个事。所以,如果我们把结构体的内存以及其成员要的内存⼀次性分配好了,并返回给⽤⼾⼀个结构体指针,⽤⼾做⼀次free就可以把所有的内存也给释放掉。
第⼆个好处是:这样有利于访问速度.
连续的内存有益于提⾼访问速度,也有益于减少内存碎⽚。(其实,我个⼈觉得也没多⾼了,反正你跑不了要⽤做偏移量的加法来寻址)
扩展阅读:
七、总结C/C++中程序内存区域划分
- 栈区(stack):在执⾏函数时,函数内局部变量的存储单元都可以在栈上创建,函数执⾏结束时这些存储单元⾃动被释放。栈内存分配运算内置于处理器的指令集中,效率很⾼,但是分配的内存容量有限。 栈区主要存放运⾏函数⽽分配的局部变量、函数参数、返回数据、返回地址等。《函数栈帧的创建和销毁》
- 堆区(heap):⼀般由程序员分配释放, 若程序员不释放,程序结束时可能由OS(操作系统)回收 。分配⽅式类似于链表。
- 数据段(静态区):(static)存放全局变量、静态数据。程序结束后由系统释放。
- 代码段:存放函数体(类成员函数和全局函数)的⼆进制代码。
八、总结
1. 为什么要有动态内存分配:
动态内存分配允许程序在运行时根据需要来分配和释放内存空间。这对于处理不确定大小的数据或者需要灵活地管理内存的情况非常重要。动态内存分配也可以避免静态内存分配的限制,使程序更具灵活性和扩展性。2. malloc和free:
malloc函数用于分配指定大小的内存空间,并返回一个指向该内存块的指针。free函数用于释放之前通过malloc函数分配的内存空间,以供后续的内存分配使用。3. calloc和realloc:
calloc函数用于分配指定大小的内存空间,并将内存块中的每个字节都初始化为0。realloc函数用于重新分配之前通过malloc或calloc函数分配的内存空间,允许扩大或缩小内存块的大小。4. 常见的动态内存的错误:
- 内存泄漏:未释放通过动态内存分配获得的内存空间,导致内存资源的浪费。
- 野指针:指向已释放的内存空间或未初始化的内存空间,访问这样的指针可能导致未定义的行为。
- 内存越界:对数组或指针进行越界访问,可能导致数据损坏或程序崩溃。
- 重复释放:多次释放同一块内存空间,也可能导致未定义的行为。5. 动态内存经典笔试题分析:
动态内存经典笔试题通常涉及内存分配、释放和使用的各种细节。例如,常见的题目包括:内存泄漏的检测、内存越界的问题、realloc函数的使用、多维数组和指针的关系等。6. 柔性数组:
柔性数组是C语言中的一种特殊用法,允许在结构体中定义一个具有可变长度的数组,可以通过动态内存分配来灵活地管理数组的大小。7. 总结C/C++中程序内存区域划分:
在C/C++程序中,通常将程序的内存划分为以下几个区域:
- 栈区:用于存放局部变量和函数调用的上下文信息。
- 堆区:用于动态内存分配,由程序员手动管理内存的分配和释放。
- 全局区/静态区:用于存储全局变量和静态变量。
- 常量区:用于存放常量数据。
- 代码区:用于存放程序的指令代码。总结以上内容:
动态内存分配是一个重要的概念,它在程序中的灵活性和扩展性方面扮演着重要的角色。掌握动态内存分配的相关知识和技巧,可以帮助我们避免内存相关的错误和提高程序的效率。