network = input_data(shape=[None,227,227,3])
network = conv_2d(network,nb_filter=96,filter_size=11,strides=4,activation="relu")
network = max_pool_2d(network,kernel_size=3,strides=2)
network = local_response_normalization(network)
network = conv_2d(network,nb_filter=256,filter_size=5,strides=4,activation="relu")
network = max_pool_2d(network,kernel_size=3,strides=2)
network = local_response_normalization(network)
network = conv_2d(network,nb_filter=384,filter_size=3,activation="relu")
network = conv_2d(network,nb_filter=384,filter_size=3,activation="relu")
network = conv_2d(network,nb_filter=256,filter_size=3,activation="relu")
network = max_pool_2d(network,kernel_size=3,strides=2)
network = local_response_normalization(network)
network = fully_connected(network,4096,activation="tanh")
network = dropout(network,0.5)
network = fully_connected(network,4096,activation="tanh")
network = dropout(network,0.5)
network = fully_connected(network,17,activation="softmax")
network = regression(network,optimizer="momentum",loss="categorical_crossentropy",
learning_rate=0.001) # 回归学习率
model = tflearn.DNN(network,checkpoint_path="model_alexnet",max_checkpoints=1,tensorboard_verbose=2)