乘法逆元
定义: 满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元。
为什么要有乘法逆元呢?
当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元。 我们可以通过求b关于p的乘法逆元k,将a乘上k再模p,
即(a*k) mod p。其结果与(a/b) mod p等价。
证:(其实很简单。。。) 根据b*k≡1 (mod p)有b*k=p*x+1。 k=(p*x+1)/b。 把k代入(a*k) mod p,
得: (a*(p*x+1)/b) mod p =((a*p*x)/b+a/b) mod p =[((a*p*x)/b) mod p +(a/b)] mod p =[(p*(a*x)/b) mod p +(a/b)] mod p //p*[(a*x)/b] mod p=0 所以原式等于:(a/b) mod p
扩展欧几里德算法是用来在已知a, b求解一组p,q使得p * a+q * b = Gcd(p, q) (解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。下面是一个使用C++的实现:
int exGcd(int a, int b, int &x, int &y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
int r = exGcd(b, a % b, x, y);
int t = x;
x = y;
y = t - a / b * y;
return r;
}
把这个实现和Gcd的递归实现相比,发现多了下面的x,y赋值过程,这就是扩展欧几里德算法的精髓。
可以这样思考:
对于a' = b, b' = a % b 而言,我们求得 x, y使得 a'x + b'y = Gcd(a', b')
由于b' = a % b = a - a / b * b (注:这里的/是程序设计语言中的除法)
那么可以得到:
a'x + b'y = Gcd(a', b') ===>
bx + (a - a / b * b)y = Gcd(a', b') = Gcd(a, b) ===>
ay +b(x - a / b*y) = Gcd(a, b)
因此对于a和b而言,他们的相对应的p,q分别是 y和(x-a/b*y)
补充:关于使用扩展欧几里德算法解决不定方程的办法
对于不定整数方程pa+qb=c,若 c mod Gcd(a, b)=0,则该方程存在整数解,否则不存在整数解。
上面已经列出找一个整数解的方法,在找到p * a+q * b = Gcd(a,b)的一组解p0,q0后,p * a+q * b = Gcd(a, b)的其他整数解满足:
p = p0 + b/Gcd(a, b) * t
q = q0 - a/Gcd(a, b) * t(其中t为任意整数)
至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(a, b)的每个解乘上 c/Gcd(a, b) 即可。
更通常的是:我们需要求解方程的最小整数解
若我们已经求得x0,y0为方程中x的一组特解,那么
x=x0+b/gcd(a,b)*t,y=y0-a/gcd(a,b)*t(t为任意整数)也为方程的解
且b/gcd(a,b),a/gcd(a,b)分别为x,y的解的最小间距,所以x在0~b/gcd(a,b)区间有且仅有一个解,
同理y在0~a/gcd(a,b)同样有且仅有一个解,这个解即为我们所需求的最小正整数解。
为什么b/gcd(a,b),a/gcd(a,b)分别为x,y的解的最小间距?
解:假设c为x的解的最小间距,此时d为y的解的间距,所以x=x0+c*t,y=y0-d*t(x0,y0为一组特解,t为任意整数)
带入方程得:a*x0+a*c*t+b*y0-b*d*t=n,因为a*x0+b*y0=n,所以a*c*t-b*d*t=0,t不等于0时,a*c=b*d
因为a,b,c,d都为正整数,所以用最小的c,d,使得等式成立,ac,bd就应该等于a,b的最小公倍数a*b/gcd(a,b),
所以c=b/gcd(a,b),d就等于a/gcd(a,b)。
所以,若最后所求解要求x为最小整数,那么x=(x0%(b/gcd(a,b))+b/gcd(a,b))%(b/gcd(a,b))即为x的最小整数解。
x0%(b/gcd(a,b))使解落到区间-b/gcd(a,b)~b/gcd(a,b),再加上b/gcd(a,b)使解在区间0~2*b/gcd(a,b),
再模上b/gcd(a,b),则得到最小整数解(注意b/gcd(a,b)为解的最小距离,重要)
|