python实现随机森林预测的参数
2023-03-15 09:21:41 阅读次数:335
python
n_estimators:森林中决策树的数量。默认100
表示这是森林中树木的数量,即基基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。
criterion:分裂节点所用的标准,可选“gini”, “entropy”,默认“gini”。
max_depth:树的最大深度。如果为None,则将节点展开,直到所有叶子都是纯净的(只有一个类),或者直到所有叶子都包含少于min_samples_split个样本。默认是None。
min_samples_split:拆分内部节点所需的最少样本数:如果为int,则将min_samples_split视为最小值。如果为float,则min_samples_split是一个分数,而ceil(min_samples_split * n_samples)是每个拆分的最小样本数。默认是2。
min_samples_leaf:在叶节点处需要的最小样本数。仅在任何深度的分割点在左分支和右分支中的每个分支上至少留下min_samples_leaf个训练样本时,才考虑。这可能具有平滑模型的效果,尤其是在回归中。如果为int,则将min_samples_leaf视为最小值。如果为float,则min_samples_leaf是分数,而ceil(min_samples_leaf * n_samples)是每个节点的最小样本数。默认是1。
min_weight_fraction_leaf:在所有叶节点处(所有输入样本)的权重总和中的最小加权分数。如果未提供sample_weight,则样本的权重相等。
max_features:寻找最佳分割时要考虑的特征数量:如果为int,则在每个拆分中考虑max_features个特征。如果为float,则max_features是一个分数,并在每次拆分时考虑int(max_features * n_features)个特征。如果为“auto”,则max_features = sqrt(n_features)。如果为“ sqrt”,则max_features = sqrt(n_features)。如果为“ log2”,则max_features = log2(n_features)。如果为None,则max_features = n_features。注意:在找到至少一个有效的节点样本分区之前,分割的搜索不会停止,即使它需要有效检查多个max_features功能也是如此。
max_leaf_nodes:最大叶子节点数,整数,默认为None
min_impurity_decrease:如果分裂指标的减少量大于该值,则进行分裂。
min_impurity_split:决策树生长的最小纯净度。默认是0。自版本0.19起不推荐使用:不推荐使用min_impurity_split,而建议使用0.19中的min_impurity_decrease。min_impurity_split的默认值在0.23中已从1e-7更改为0,并将在0.25中删除。
bootstrap:是否进行bootstrap操作,bool。默认True。如果bootstrap==True,将每次有放回地随机选取样本,只有在extra-trees中,bootstrap=False
oob_score:是否使用袋外样本来估计泛化精度。默认False。
n_jobs:并行计算数。默认是None。
random_state:控制bootstrap的随机性以及选择样本的随机性。
verbose:在拟合和预测时控制详细程度。默认是0。
class_weight:每个类的权重,可以用字典的形式传入{class_label: weight}。如果选择了“balanced”,则输入的权重为n_samples / (n_classes * np.bincount(y))。
ccp_alpha:将选择成本复杂度最大且小于ccp_alpha的子树。默认情况下,不执行修剪。
max_samples:如果bootstrap为True,则从X抽取以训练每个基本分类器的样本数。如果为None(默认),则抽取X.shape [0]样本。如果为int,则抽取max_samples样本。如果为float,则抽取max_samples * X.shape [0]个样本。因此,max_samples应该在(0,1)中。是0.22版中的新功能。
版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/u_14682436/6059841,作者:TwcatL_tree,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。
上一篇:#yyds干货盘点# 【实用】用 FP 思想将 JS 循环做简单封装~
下一篇:Codeforces 题记 Different Rules