使用outflux 导入influxdb 的数据到timescaledb
influxdb 以及timescaledb 都是不错的时序数据库,timescaledb 团队提供了直接从influxdb 导入
环境准备
- docker-compose 文件
version: "3"
services:
timescaledb:
image: timescale/timescaledb-postgis:latest-pg10
ports:
- "5432:5432"
environment:
- "POSTGRES_PASSWORD=dalong"
influxdb:
image: influxdb
ports:
- "8086:8086"
influxdb 数据导入
- 下载测试数据
注意需要在容器中操作 docker-compose exec influxdb sh
- 导入
influx -import -path=./outflux_taxi.txt -database=outflux_tutorial
schema 迁移
./outflux schema-transfer outflux_tutorial taxi --input-server
dalong"
效果
2019/04/12 11:03:55 Selected input database: outflux_tutorial
2019/04/12 11:03:55 Overriding PG environment variables for connection with: dbname=postgres user=postgres password=dalong
2019/04/12 11:03:55 pipe_taxi starting execution
2019/04/12 11:03:55 Discovering influx schema for measurement: taxi
2019/04/12 11:03:55 Discovered: DataSet { Name: taxi, Columns: [Column { Name: time, DataType: IDRFTimestamp} Column { Name: location_id, DataType
: IDRFString} Column { Name: rating, DataType: IDRFString} Column { Name: vendor, DataType: IDRFString} Column { Name: fare, DataType: IDRFDouble}
Column { Name: mta_tax, DataType: IDRFDouble} Column { Name: tip, DataType: IDRFDouble} Column { Name: tolls, DataType: IDRFDouble}], Time Column
: time }
2019/04/12 11:03:55 Selected Schema Strategy: CreateIfMissing
2019/04/12 11:03:55 existing hypertable 'taxi' is partitioned properly
2019/04/12 11:03:55 No data transfer will occur
2019/04/12 11:03:55 Schema Transfer complete in: 0.079 seconds
数据迁移
./outflux migrate outflux_tutorial taxi --input-server
效果
2019/04/12 11:04:33 All pipelines scheduled
2019/04/12 11:04:33 Overriding PG environment variables for connection with: dbname=postgres user=postgres password=dalong
2019/04/12 11:04:33 pipe_taxi starting execution
2019/04/12 11:04:33 Discovering influx schema for measurement: taxi
2019/04/12 11:04:33 Discovered: DataSet { Name: taxi, Columns: [Column { Name: time, DataType: IDRFTimestamp} Column { Name: location_id, DataType
: IDRFString} Column { Name: rating, DataType: IDRFString} Column { Name: vendor, DataType: IDRFString} Column { Name: fare, DataType: IDRFDouble}
Column { Name: mta_tax, DataType: IDRFDouble} Column { Name: tip, DataType: IDRFDouble} Column { Name: tolls, DataType: IDRFDouble}], Time Column
: time }
2019/04/12 11:04:33 Selected Schema Strategy: DropAndCreate
2019/04/12 11:04:33 Table taxi exists, dropping it
2019/04/12 11:04:33 Executing: DROP TABLE taxi
2019/04/12 11:04:33 Table taxi ready to be created
2019/04/12 11:04:33 Creating table with:
CREATE TABLE "taxi"("time" TIMESTAMP, "location_id" TEXT, "rating" TEXT, "vendor" TEXT, "fare" FLOAT, "mta_tax" FLOAT, "tip" FLOAT, "tolls" FLOAT
)
2019/04/12 11:04:33 Preparing TimescaleDB extension:
CREATE EXTENSION IF NOT EXISTS timescaledb
2019/04/12 11:04:33 Creating hypertable with: SELECT create_hypertable('"taxi"', 'time');
2019/04/12 11:04:33 Starting extractor 'pipe_taxi_ext' for measure: taxi
2019/04/12 11:04:33 Starting data ingestor 'pipe_taxi_ing'
2019/04/12 11:04:33 pipe_taxi_ext: Extracting data from database 'outflux_tutorial'
2019/04/12 11:04:33 pipe_taxi_ext: SELECT "time", "location_id", "rating", "vendor", "fare", "mta_tax", "tip", "tolls"
FROM "taxi"
2019/04/12 11:04:33 pipe_taxi_ext:Pulling chunks with size 15000
2019/04/12 11:04:33 Will batch insert 8000 rows at once. With commit strategy: CommitOnEachBatch
2019/04/12 11:04:33 pipe_taxi_ext: Extracted 185 rows from Influx
2019/04/12 11:04:33 pipe_taxi_ing: Complete. Inserted 185 rows.
2019/04/12 11:04:33 All pipelines finished
2019/04/12 11:04:33 Migration execution time: 0.094 seconds