名言警句
任何先进的技术均与魔法无异
追本溯源
【经历了6个月的失踪,我将带着干货终究归来!【RocketMQ入门到精通】】
什么是消息的顺序性
消息的顺序性指的是在消息消费时,能按照发送的顺序来消费。例如:针对于商城服务的的下单到付款的流程中,会产生三条业务消息,它们分别是订单创建、订单付款、订单完成。消费时要按照这个顺序消费才能有意义,但是同时订单之间是可以并行消费的。这时候就必须要考虑保证消息有序,如下图所示。
顺序消息的分类
顺序消息分为全局顺序消息与分区顺序消息,全局顺序是指某个Topic下的所有消息都要保证顺序;部分顺序消息只要保证每一组消息被顺序消费即可。
全局顺序
对于指定的一个 Topic,所有消息按照严格的先入先出(FIFO)的顺序进行发布和消费。
- 适用场景:性能要求不高,所有的消息严格按照 FIFO 原则进行消息发布和消费的场景。
分区顺序
对于指定的一个 Topic,所有消息根据sharding key进行区块分区。 同一个分区内的消息按照严格的 FIFO 顺序进行发布和消费。 Sharding key 是顺序消息中用来区分不同分区的关键字段,和普通消息的 Key 是完全不同的概念。
- 适用场景:性能要求高,以sharding key作为分区字段,同一个区块严格的按照FIFO原则进行消息发布和消费的场景。
普通顺序消息(Normal Ordered Message)
普通顺序消费模式下,消费者通过同一个消费队列收到的消息是有顺序的,不同消息队列收到的消息则可能是无顺序的。
严格顺序消息(Strictly Ordered Message)
严格顺序消息模式下,消费者收到的所有消息均是有顺序的。
顺序消息缺陷
- 发送顺序消息无法利用集群 FailOver 特性
- 消费顺序消息的并行度依赖于队列数量
- 队列热点问题,个别队列由于哈希不均导致消息过多,消费速度跟不上,产生消息堆积问题
- 遇到消息失败的消息,无法跳过,当前队列消费暂停
顺序消息的实现
对于一个指定的Topic,消息严格按照先进先出(FIFO)的原则进行消息发布和消费,即先发布的消息先消费,后发布的消息后消费。在 Apache RocketMQ 中支持分区顺序消息,如下图所示。我们可以按照某一个标准对消息进行分区(比如根据ShardingKey进行分区),同一个ShardingKey的消息会被分配到同一个队列中,并按照顺序被消费。
需要注意的是 RocketMQ 消息的顺序性分为两部分,生产顺序性和消费顺序性。只有同时满足了生产顺序性和消费顺序性才能达到上述的FIFO效果。
RocketMQ的生产顺序性
RocketMQ通过生产者和服务端的协议保障单个生产者串行地发送消息,并按序存储和持久化。如需保证消息生产的顺序性,则必须满足以下条件:
- 单一生产者: 消息生产的顺序性仅支持单一生产者,不同生产者分布在不同的系统,即使设置相同的分区键,不同生产者之间产生的消息也无法判定其先后顺序。
- 串行发送:生产者客户端支持多线程安全访问,但如果生产者使用多线程并行发送,则不同线程间产生的消息将无法判定其先后顺序。
满足以上条件的生产者,将顺序消息发送至服务端后,会保证设置了同一分区键的消息,按照发送顺序存储在同一队列中。服务端顺序存储逻辑如下:
顺序消息的应用场景也非常广泛,在有序事件处理、撮合交易、数据实时增量同步等场景下,异构系统间需要维持强一致的状态同步,上游的事件变更需要按照顺序传递到下游进行处理。
例如,创建订单的场景,需要保证同一个订单的生成、付款和发货,这三个操作被顺序执行。如果是普通消息,订单A的消息可能会被轮询发送到不同的队列中,不同队列的消息将无法保持顺序,而顺序消息发送时将ShardingKey相同(同一订单号)的消息序路由到一个逻辑队列中。
生产者顺序消息
顺序消息的代码手动实现如下所示:
public class Producer {
public static void main(String[] args) throws UnsupportedEncodingException {
try {
DefaultMQProducer producer = new DefaultMQProducer("test_group");
producer.start();
String[] tags = new String[] {"TagA", "TagB", "TagC", "TagD", "TagE"};
for (int i = 0; i < 100; i++) {
int orderId = i % 10;
Message msg =
new Message("TopicTest", tags[i % tags.length], "KEY" + i,
("Hello RocketMQ " + i).getBytes(RemotingHelper.DEFAULT_CHARSET));
SendResult sendResult = producer.send(msg, new MessageQueueSelector() {
@Override
public MessageQueue select(List<MessageQueue> mqs, Message msg, Object arg) {
Integer id = (Integer) arg;
int index = id % mqs.size();
return mqs.get(index);
}
}, orderId);
System.out.printf("%s%n", sendResult);
}
producer.shutdown();
} catch (MQClientException | RemotingException | MQBrokerException | InterruptedException e) {
e.printStackTrace();
}
}
}
这里的区别主要是调用了SendResult send(Message msg, MessageQueueSelector selector, Object arg)
方法,MessageQueueSelector 是队列选择器,arg 是一个 Java Object 对象,可以传入作为消息发送分区的分类标准。
MessageQueueSelector的接口如下:
public interface MessageQueueSelector {
MessageQueue select(final List<MessageQueue> mqs, final Message msg, final Object arg);
}
其中mqs是可以发送的队列,msg是消息,arg是上述send接口中传入的Object对象,返回的是该消息需要发送到的队列。上述例子里,是以orderId作为分区分类标准,对所有队列个数取余,来对将相同orderId的消息发送到同一个队列中。
生产环境中建议选择最细粒度的分区键进行拆分,例如,将订单ID、用户ID作为分区键关键字,可实现同一终端用户的消息按照顺序处理,不同用户的消息无需保证顺序。
顺序消息的一致性(系统支持)
如果一个Broker掉线,那么此时队列总数是否会发化?如果发生变化,那么同一个 ShardingKey 的消息就会发送到不同的队列上,造成乱序。如果不发生变化,那消息将会发送到掉线Broker的队列上,必然是失败的。因此 Apache RocketMQ 提供了两种模式,如果要保证严格顺序而不是可用性,创建 Topic 是要指定 -o
参数(--order)为true,表示顺序消息:
$ sh bin/mqadmin updateTopic -c DefaultCluster -t TopicTest -o true -n 127.0.0.1:9876
create topic to 127.0.0.1:10911 success.
TopicConfig [topicName=TopicTest, readQueueNums=8, writeQueueNums=8, perm=RW-, topicFilterType=SINGLE_TAG, topicSysFlag=0, order=true, attributes=null]
其次要保证NameServer中的配置 orderMessageEnable
和 returnOrderTopicConfigToBroker
必须是 true。如果上述任意一个条件不满足,则是保证可用性而不是严格顺序。
消费组顺序消息
顺序消费的原理解析,在默认的情况下消息发送会采取Round Robin轮询方式把消息发送到不同的queue(分区队列);而消费消息的时候从多个queue上拉取消息,这种情况发送和消费是不能保证顺序。但是如果控制发送的顺序消息只依次发送到同一个queue中,消费的时候只从这个queue上依次拉取,则就保证了顺序。当发送和消费参与的queue只有一个,则是全局有序;如果多个queue参与,则为分区有序,即相对每个queue,消息都是有序的。
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeConcurrentlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerConcurrently;
import org.apache.rocketmq.common.message.MessageExt;
import java.util.List;
package org.apache.rocketmq.example.order2;
import org.apache.rocketmq.client.consumer.DefaultMQPushConsumer;
import org.apache.rocketmq.client.consumer.listener.ConsumeOrderlyContext;
import org.apache.rocketmq.client.consumer.listener.ConsumeOrderlyStatus;
import org.apache.rocketmq.client.consumer.listener.MessageListenerOrderly;
import org.apache.rocketmq.common.consumer.ConsumeFromWhere;
import org.apache.rocketmq.common.message.MessageExt;
import java.util.List;
import java.util.Random;
import java.util.concurrent.TimeUnit;
/**
* 顺序消息消费,带事务方式(应用可控制Offset什么时候提交)
*/
public class ConsumerInOrder {
public static void main(String[] args) throws Exception {
DefaultMQPushConsumer consumer = new DefaultMQPushConsumer("please_rename_unique_group_name_3");
consumer.setNamesrvAddr("127.0.0.1:9876");
/**
* 设置Consumer第一次启动是从队列头部开始消费还是队列尾部开始消费<br>
* 如果非第一次启动,那么按照上次消费的位置继续消费
*/
consumer.setConsumeFromWhere(ConsumeFromWhere.CONSUME_FROM_FIRST_OFFSET);
consumer.subscribe("TopicTest", "TagA || TagC || TagD");
consumer.registerMessageListener(new MessageListenerOrderly() {
Random random = new Random();
@Override
public ConsumeOrderlyStatus consumeMessage(List<MessageExt> msgs, ConsumeOrderlyContext context) {
context.setAutoCommit(true);
for (MessageExt msg : msgs) {
// 可以看到每个queue有唯一的consume线程来消费, 订单对每个queue(分区)有序
System.out.println("consumeThread=" + Thread.currentThread().getName() + "queueId=" + msg.getQueueId() + ", content:" + new String(msg.getBody()));
}
try {
//模拟业务逻辑处理中...
TimeUnit.SECONDS.sleep(random.nextInt(10));
} catch (Exception e) {
e.printStackTrace();
}
return ConsumeOrderlyStatus.SUCCESS;
}
});
consumer.start();
System.out.println("Consumer Started.");
}
}