C# OpenCvSharp DNN 部署YOLOV6目标检测
效果
模型信息
Inputs
-------------------------
name:image_arrays
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------
Outputs
-------------------------
name:outputs
tensor:Float[1, 8400, 85]
---------------------------------------------------------------
项目
代码
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Windows.Forms;namespace OpenCvSharp_DNN_Demo
{
public partial class frmMain : Form
{
public frmMain()
{
InitializeComponent();
} string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = ""; DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now; float confThreshold;
float nmsThreshold;
string modelpath; int inpHeight;
int inpWidth; List<string> class_names;
int num_class; Net opencv_net;
Mat BN_image; Mat image;
Mat result_image; private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return; pictureBox1.Image = null;
pictureBox2.Image = null;
textBox1.Text = ""; image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
} private void Form1_Load(object sender, EventArgs e)
{
confThreshold = 0.3f;
nmsThreshold = 0.5f;
modelpath = "model/yolov6s.onnx"; inpHeight = 640;
inpWidth = 640; opencv_net = CvDnn.ReadNetFromOnnx(modelpath);
class_names = new List<string>();
StreamReader sr = new StreamReader("model/coco.names");
string line;
while ((line = sr.ReadLine()) != null)
{
class_names.Add(line);
}
num_class = class_names.Count(); image_path = "test_img/image3.jpg";
pictureBox1.Image = new Bitmap(image_path); }
float sigmoid(float x)
{
return (float)(1.0 / (1 + Math.Exp(-x)));
} Mat ResizeImage(Mat srcimg, out int newh, out int neww, out int top, out int left)
{
int srch = srcimg.Rows, srcw = srcimg.Cols;
top = 0;
left = 0;
newh = inpHeight;
neww = inpWidth;
Mat dstimg = new Mat();
if (srch != srcw)
{
float hw_scale = (float)srch / srcw;
if (hw_scale > 1)
{
newh = inpHeight;
neww = (int)(inpWidth / hw_scale);
Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh), 0, 0, InterpolationFlags.Area);
left = (int)((inpWidth - neww) * 0.5);
Cv2.CopyMakeBorder(dstimg, dstimg, 0, 0, left, inpWidth - neww - left, BorderTypes.Constant);
}
else
{
newh = (int)(inpHeight * hw_scale);
neww = inpWidth;
Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh), 0, 0, InterpolationFlags.Area);
top = (int)((inpHeight - newh) * 0.5);
Cv2.CopyMakeBorder(dstimg, dstimg, top, inpHeight - newh - top, 0, 0, BorderTypes.Constant);
}
}
else
{
Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh));
}
return dstimg;
} private unsafe void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
textBox1.Text = "检测中,请稍等……";
pictureBox2.Image = null;
Application.DoEvents(); image = new Mat(image_path);
int newh = 0, neww = 0, padh = 0, padw = 0;
Mat dstimg = ResizeImage(image, out newh, out neww, out padh, out padw); BN_image = CvDnn.BlobFromImage(dstimg, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);
//配置图片输入数据
opencv_net.SetInput(BN_image); //模型推理,读取推理结果
Mat[] outs = new Mat[3] { new Mat(), new Mat(), new Mat() };
string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray(); dt1 = DateTime.Now;
opencv_net.Forward(outs, outBlobNames);
dt2 = DateTime.Now;
int num_proposal = outs[0].Size(0);
int nout = outs[0].Size(1); if (outs[0].Dims > 2)
{
num_proposal = outs[0].Size(1);
nout = outs[0].Size(2);
outs[0] = outs[0].Reshape(0, num_proposal);
} float ratioh = 1.0f * image.Rows / newh, ratiow = 1.0f * image.Cols / neww;
int n = 0, row_ind = 0; ///cx,cy,w,h,box_score,class_score
float* pdata = (float*)outs[0].Data; List<Rect> boxes = new List<Rect>();
List<float> confidences = new List<float>();
List<int> classIds = new List<int>(); for (n = 0; n < num_proposal; n++)
{
float box_score = pdata[4]; if (box_score > confThreshold)
{
Mat scores = outs[0].Row(row_ind).ColRange(5, nout);
double minVal, max_class_socre;
OpenCvSharp.Point minLoc, classIdPoint;
// Get the value and location of the maximum score
Cv2.MinMaxLoc(scores, out minVal, out max_class_socre, out minLoc, out classIdPoint);
max_class_socre *= box_score; int class_idx = classIdPoint.X;
float cx = (pdata[0] - padw) * ratiow; //cx
float cy = (pdata[1] - padh) * ratioh; //cy
float w = pdata[2] * ratiow; //w
float h = pdata[3] * ratioh; //h int left = (int)(cx - 0.5 * w);
int top = (int)(cy - 0.5 * h); confidences.Add((float)max_class_socre);
boxes.Add(new Rect(left, top, (int)w, (int)h));
classIds.Add(class_idx);
}
row_ind++;
pdata += nout; }
int[] indices;
CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices); result_image = image.Clone();
for (int ii = 0; ii < indices.Length; ++ii)
{
int idx = indices[ii];
Rect box = boxes[idx];
Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);
string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");
Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 0.75, new Scalar(0, 0, 255), 1);
} pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
} private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image);
} private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image);
}
}
}
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Windows.Forms;
namespace OpenCvSharp_DNN_Demo
{
public partial class frmMain : Form
{
public frmMain()
{
InitializeComponent();
}
string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
string image_path = "";
DateTime dt1 = DateTime.Now;
DateTime dt2 = DateTime.Now;
float confThreshold;
float nmsThreshold;
string modelpath;
int inpHeight;
int inpWidth;
List<string> class_names;
int num_class;
Net opencv_net;
Mat BN_image;
Mat image;
Mat result_image;
private void button1_Click(object sender, EventArgs e)
{
OpenFileDialog ofd = new OpenFileDialog();
ofd.Filter = fileFilter;
if (ofd.ShowDialog() != DialogResult.OK) return;
pictureBox1.Image = null;
pictureBox2.Image = null;
textBox1.Text = "";
image_path = ofd.FileName;
pictureBox1.Image = new Bitmap(image_path);
image = new Mat(image_path);
}
private void Form1_Load(object sender, EventArgs e)
{
confThreshold = 0.3f;
nmsThreshold = 0.5f;
modelpath = "model/yolov6s.onnx";
inpHeight = 640;
inpWidth = 640;
opencv_net = CvDnn.ReadNetFromOnnx(modelpath);
class_names = new List<string>();
StreamReader sr = new StreamReader("model/coco.names");
string line;
while ((line = sr.ReadLine()) != null)
{
class_names.Add(line);
}
num_class = class_names.Count();
image_path = "test_img/image3.jpg";
pictureBox1.Image = new Bitmap(image_path);
}
float sigmoid(float x)
{
return (float)(1.0 / (1 + Math.Exp(-x)));
}
Mat ResizeImage(Mat srcimg, out int newh, out int neww, out int top, out int left)
{
int srch = srcimg.Rows, srcw = srcimg.Cols;
top = 0;
left = 0;
newh = inpHeight;
neww = inpWidth;
Mat dstimg = new Mat();
if (srch != srcw)
{
float hw_scale = (float)srch / srcw;
if (hw_scale > 1)
{
newh = inpHeight;
neww = (int)(inpWidth / hw_scale);
Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh), 0, 0, InterpolationFlags.Area);
left = (int)((inpWidth - neww) * 0.5);
Cv2.CopyMakeBorder(dstimg, dstimg, 0, 0, left, inpWidth - neww - left, BorderTypes.Constant);
}
else
{
newh = (int)(inpHeight * hw_scale);
neww = inpWidth;
Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh), 0, 0, InterpolationFlags.Area);
top = (int)((inpHeight - newh) * 0.5);
Cv2.CopyMakeBorder(dstimg, dstimg, top, inpHeight - newh - top, 0, 0, BorderTypes.Constant);
}
}
else
{
Cv2.Resize(srcimg, dstimg, new OpenCvSharp.Size(neww, newh));
}
return dstimg;
}
private unsafe void button2_Click(object sender, EventArgs e)
{
if (image_path == "")
{
return;
}
textBox1.Text = "检测中,请稍等……";
pictureBox2.Image = null;
Application.DoEvents();
image = new Mat(image_path);
int newh = 0, neww = 0, padh = 0, padw = 0;
Mat dstimg = ResizeImage(image, out newh, out neww, out padh, out padw);
BN_image = CvDnn.BlobFromImage(dstimg, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);
//配置图片输入数据
opencv_net.SetInput(BN_image);
//模型推理,读取推理结果
Mat[] outs = new Mat[3] { new Mat(), new Mat(), new Mat() };
string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();
dt1 = DateTime.Now;
opencv_net.Forward(outs, outBlobNames);
dt2 = DateTime.Now;
int num_proposal = outs[0].Size(0);
int nout = outs[0].Size(1);
if (outs[0].Dims > 2)
{
num_proposal = outs[0].Size(1);
nout = outs[0].Size(2);
outs[0] = outs[0].Reshape(0, num_proposal);
}
float ratioh = 1.0f * image.Rows / newh, ratiow = 1.0f * image.Cols / neww;
int n = 0, row_ind = 0; ///cx,cy,w,h,box_score,class_score
float* pdata = (float*)outs[0].Data;
List<Rect> boxes = new List<Rect>();
List<float> confidences = new List<float>();
List<int> classIds = new List<int>();
for (n = 0; n < num_proposal; n++)
{
float box_score = pdata[4];
if (box_score > confThreshold)
{
Mat scores = outs[0].Row(row_ind).ColRange(5, nout);
double minVal, max_class_socre;
OpenCvSharp.Point minLoc, classIdPoint;
// Get the value and location of the maximum score
Cv2.MinMaxLoc(scores, out minVal, out max_class_socre, out minLoc, out classIdPoint);
max_class_socre *= box_score;
int class_idx = classIdPoint.X;
float cx = (pdata[0] - padw) * ratiow; //cx
float cy = (pdata[1] - padh) * ratioh; //cy
float w = pdata[2] * ratiow; //w
float h = pdata[3] * ratioh; //h
int left = (int)(cx - 0.5 * w);
int top = (int)(cy - 0.5 * h);
confidences.Add((float)max_class_socre);
boxes.Add(new Rect(left, top, (int)w, (int)h));
classIds.Add(class_idx);
}
row_ind++;
pdata += nout;
}
int[] indices;
CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);
result_image = image.Clone();
for (int ii = 0; ii < indices.Length; ++ii)
{
int idx = indices[ii];
Rect box = boxes[idx];
Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);
string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");
Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 0.75, new Scalar(0, 0, 255), 1);
}
pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";
}
private void pictureBox2_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox2.Image);
}
private void pictureBox1_DoubleClick(object sender, EventArgs e)
{
Common.ShowNormalImg(pictureBox1.Image);
}
}
}