立即前往

活动

天翼云最新优惠活动,涵盖免费试用,产品折扣等,助您降本增效!
查看全部活动
热门活动
  • 智算采购季 热销S6云服务器2核4G限时88元/年起,部分主机可加赠对象存储组合包!
  • 免费体验DeepSeek,上天翼云息壤 NEW 新老用户均可免费体验2500万Tokens,限时两周
  • 云上钜惠 HOT 爆款云主机全场特惠,更有万元锦鲤券等你来领!
  • 算力套餐 HOT 让算力触手可及
  • 天翼云脑AOne NEW 连接、保护、办公,All-in-One!
  • 一键部署Llama3大模型学习机 0代码一键部署,预装最新主流大模型Llama3与StableDiffusion
  • 中小企业应用上云专场 产品组合下单即享折上9折起,助力企业快速上云
  • 息壤高校钜惠活动 NEW 天翼云息壤杯高校AI大赛,数款产品享受线上订购超值特惠
  • 天翼云电脑专场 HOT 移动办公新选择,爆款4核8G畅享1年3.5折起,快来抢购!
  • 天翼云奖励推广计划 加入成为云推官,推荐新用户注册下单得现金奖励
免费活动
  • 免费试用中心 HOT 多款云产品免费试用,快来开启云上之旅
  • 天翼云用户体验官 NEW 您的洞察,重塑科技边界

智算服务

打造统一的产品能力,实现算网调度、训练推理、技术架构、资源管理一体化智算服务
智算云(DeepSeek专区)
科研助手
  • 算力商城
  • 应用商城
  • 开发机
  • 并行计算
算力互联调度平台
  • 应用市场
  • 算力市场
  • 算力调度推荐
一站式智算服务平台
  • 模型广场
  • 体验中心
  • 服务接入
智算一体机
  • 智算一体机
大模型
  • DeepSeek-R1-昇腾版(671B)
  • DeepSeek-R1-英伟达版(671B)
  • DeepSeek-V3-昇腾版(671B)
  • DeepSeek-R1-Distill-Llama-70B
  • DeepSeek-R1-Distill-Qwen-32B
  • Qwen2-72B-Instruct
  • StableDiffusion-V2.1
  • TeleChat-12B

应用商城

天翼云精选行业优秀合作伙伴及千余款商品,提供一站式云上应用服务
进入甄选商城进入云市场创新解决方案
办公协同
  • WPS云文档
  • 安全邮箱
  • EMM手机管家
  • 智能商业平台
财务管理
  • 工资条
  • 税务风控云
企业应用
  • 翼信息化运维服务
  • 翼视频云归档解决方案
工业能源
  • 智慧工厂_生产流程管理解决方案
  • 智慧工地
建站工具
  • SSL证书
  • 新域名服务
网络工具
  • 翼云加速
灾备迁移
  • 云管家2.0
  • 翼备份
资源管理
  • 全栈混合云敏捷版(软件)
  • 全栈混合云敏捷版(一体机)
行业应用
  • 翼电子教室
  • 翼智慧显示一体化解决方案

合作伙伴

天翼云携手合作伙伴,共创云上生态,合作共赢
天翼云生态合作中心
  • 天翼云生态合作中心
天翼云渠道合作伙伴
  • 天翼云代理渠道合作伙伴
天翼云服务合作伙伴
  • 天翼云集成商交付能力认证
天翼云应用合作伙伴
  • 天翼云云市场合作伙伴
  • 天翼云甄选商城合作伙伴
天翼云技术合作伙伴
  • 天翼云OpenAPI中心
  • 天翼云EasyCoding平台
天翼云培训认证
  • 天翼云学堂
  • 天翼云市场商学院
天翼云合作计划
  • 云汇计划
天翼云东升计划
  • 适配中心
  • 东升计划
  • 适配互认证

开发者

开发者相关功能入口汇聚
技术社区
  • 专栏文章
  • 互动问答
  • 技术视频
资源与工具
  • OpenAPI中心
开放能力
  • EasyCoding敏捷开发平台
培训与认证
  • 天翼云学堂
  • 天翼云认证
魔乐社区
  • 魔乐社区

支持与服务

为您提供全方位支持与服务,全流程技术保障,助您轻松上云,安全无忧
文档与工具
  • 文档中心
  • 新手上云
  • 自助服务
  • OpenAPI中心
定价
  • 价格计算器
  • 定价策略
基础服务
  • 售前咨询
  • 在线支持
  • 在线支持
  • 工单服务
  • 建议与反馈
  • 用户体验官
  • 服务保障
  • 客户公告
  • 会员中心
增值服务
  • 红心服务
  • 客户支持计划
  • 专家技术服务
  • 备案管家

了解天翼云

天翼云秉承央企使命,致力于成为数字经济主力军,投身科技强国伟大事业,为用户提供安全、普惠云服务
品牌介绍
  • 关于天翼云
  • 智算云
  • 天翼云4.0
  • 新闻资讯
  • 天翼云APP
基础设施
  • 全球基础设施
  • 产品能力
  • 信任中心
最佳实践
  • 精选案例
  • 超级探访
  • 云杂志
  • 分析师和白皮书
  • 天翼云·创新直播间
市场活动
  • 2025智能云生态大会
  • 2024智算云生态大会
  • 2023云生态大会
  • 2022云生态大会
  • 天翼云中国行
天翼云
  • 活动
  • 智算服务
  • 产品
  • 解决方案
  • 应用商城
  • 合作伙伴
  • 开发者
  • 支持与服务
  • 了解天翼云
    • 关系数据库SQL Server版
    • 企业主机安全
    • 云防火墙
    • CDN加速
    • 物理机
    • GPU云主机
    • 天翼云电脑(政企版)
    • 天翼云电脑(公众版)
    • 云主机备份
    • 弹性云主机
      搜索发现
      关系数据库SQL Server版企业主机安全云防火墙CDN加速物理机GPU云主机天翼云电脑(政企版)天翼云电脑(公众版)云主机备份弹性云主机
    • 文档
    • 控制中心
    • 备案
    • 管理中心
    • 登录
    • 免费注册

    给定两个正整数x、y,都是int整型(java里) 返回0 ~ x以内,每位数字加起来是y的数字个数。

    首页 知识中心 软件开发 文章详情页

    给定两个正整数x、y,都是int整型(java里) 返回0 ~ x以内,每位数字加起来是y的数字个数。

    2024-05-16 09:46:12 阅读次数:38

    rust,开发语言,算法

    给定两个正整数x、y,都是int整型(java里)
    返回0 ~ x以内,每位数字加起来是y的数字个数。
    比如,x = 20、y = 5,返回2,
    因为0 ~ x以内,每位数字加起来是5的数字有:5、14,
    x、y范围是java里正整数的范围,
    x <= 2 * 10^9,
    y <= 90。
    输入:1000,4。
    输出:15。
    输入:2000,6。
    输出:49。

    本文介绍了两种解决给定 x 和 y,求 0~x 中每位数字之和为 y 的数字个数的方法。第一种方法使用暴力枚举的方式,遍历 0~x 中的每一个数字,计算其每位数字之和是否等于 y,并统计符合条件的数字数量。第二种方法使用动态规划的思想,通过数位 DP 的方式快速计算符合条件的数字数量。

    1. 暴力枚举法

    暴力枚举法是一种朴素的解题思路,对于每个数字,我们可以循环计算其每位数字之和,然后判断是否等于 y,如果是,则计数器加 1。这种方法看似简单,但由于需要遍历 x 个数,时间复杂度为 O(x * log(x)),不能满足本题要求的时间复杂度。

    1. 数位 DP

    数位 DP 是一种常见的动态规划思想,主要用于解决与数字相关的问题。其基本思路是将数字按照位数拆分,然后根据各位数字的限制条件(如数字大小、数字和等)进行状态转移,最终得到答案。

    本题中,我们可以使用数位 DP 来计算符合条件的数字数量。具体来说,假设当前处理到数字 x 的第 i 位,已经确定前 i-1 位的数字为 num,则当前的状态可以表示为 (i, num, sum),其中 sum 表示前 i 位数字之和。根据此状态定义,我们可以设计转移方程如下:

    如果 i == 0,则返回 sum 是否等于 y 的结果,即 count(x, i, num, sum) = if sum == y {1} else {0}。

    否则,设当前处理到的数字为 cur,则有两种情况:

    当 cur <= sum 时,对答案的贡献为 get_form(i-1, sum-cur),即在第 i-1 位上选择符合条件的数字,然后将其放在当前位置上。

    当 cur == x / offset % 10 时,需要递归计算下一位数字的方案总数,即 count(x, i-1, num+cur*offset, sum-cur)。

    最终的答案为 count(x, len, 0, y),其中 len 表示数字 x 的位数,offset 表示当前处理到的位数所代表的权值。

    为了提高效率,我们可以使用记忆化搜索来避免重复计算。具体来说,我们可以使用一个二维数组 dp 来记录已经计算过的状态,如果当前状态已经被计算过,则直接返回其对应的结果。

    同时,由于在转移方程中需要频繁地查询 get_form(i, sum) 函数,这会导致函数调用次数过多,降低程序效率。因此,我们可以在程序运行前先预处理出所有可能的状态下的方案数,然后使用静态数组保存结果,在程序运行时直接查询即可。

    综上所述,本题的数位 DP 解法时间复杂度为 O(log(x) * y),空间复杂度为 O(log(x) * y)。相比于暴力枚举法,数位 DP 基于动态规划的思想,通过状态转移方程快速计算答案,具有更高的效率和更好的可拓展性。

    rust代码如下:

    fn num1(x: i32, y: i32) -> i32 {
        let mut ans = 0;
        for i in 0..=x {
            if check1(i, y) {
                ans += 1;
            }
        }
        ans
    }
    
    fn check1(num: i32, y: i32) -> bool {
        let mut sum = 0;
        let mut n = num;
        while n != 0 {
            sum += n % 10;
            n /= 10;
        }
        sum == y
    }
    
    fn num2(x: i32, y: i32) -> i32 {
        if x < 0 || y > 90 {
            return 0;
        }
        if x == 0 {
            return if y == 0 { 1 } else { 0 };
        }
        let mut offset = 1;
        let mut len = 1;
        while offset <= x / 10 {
            offset *= 10;
            len += 1;
        }
        let mut dp = vec![vec![-1; (y + 1) as usize]; (len + 1) as usize];
        count(x, offset, len, y, &mut dp)
    }
    
    fn count(x: i32, offset: i32, len: i32, rest: i32, dp: &mut Vec<Vec<i32>>) -> i32 {
        if len == 0 {
            return if rest == 0 { 1 } else { 0 };
        }
        if dp[len as usize][rest as usize] != -1 {
            return dp[len as usize][rest as usize];
        }
        let mut ans = 0;
        let cur = (x / offset) % 10;
        for i in 0..cur.min(rest + 1) {
            ans += get_form((len - 1) as usize, (rest - i) as usize);
        }
        if cur <= rest {
            ans += count(x, offset / 10, len - 1, rest - cur, dp);
        }
        dp[len as usize][rest as usize] = ans;
        ans
    }
    
    // 打表
    const FORM_SIZE: usize = 11;
    const FORM_SUM: usize = 91;
    
    static mut FORM: [[i32; FORM_SUM]; FORM_SIZE] = [[0; FORM_SUM]; FORM_SIZE];
    
    fn init_form() {
        unsafe {
            FORM[0][0] = 1;
            for len in 1..=10 {
                for sum in 0..=len * 9 {
                    for cur in 0..=9.min(sum as i32) {
                        FORM[len as usize][sum as usize] +=
                            FORM[(len - 1) as usize][(sum - cur) as usize];
                    }
                }
            }
        }
    }
    
    fn get_form(len: usize, sum: usize) -> i32 {
        unsafe { FORM[len][sum] }
    }
    
    fn main() {
        println!("{}", i32::MAX);
        init_form();
        println!("{}", num1(88739128, 37));
        println!("{}", num2(88739128, 37));
    
        println!("{}", num1(1000, 4));
        println!("{}", num2(1000, 4));
    
        println!("{}", num1(2000, 6));
        println!("{}", num2(2000, 6));
    }
    
    

    2023-04-10:给定两个正整数x、y,都是int整型(java里) 返回0 ~ x以内,每位数字加起来是y的数字个数。 比如,x = 20、y = 5,返回2, 因为0 ~ x以内,每位数字加起

    版权声明:本文内容来自第三方投稿或授权转载,原文地址:https://blog.51cto.com/moonfdd/6266764,作者:福大大架构师每日一题,版权归原作者所有。本网站转在其作品的目的在于传递更多信息,不拥有版权,亦不承担相应法律责任。如因作品内容、版权等问题需要同本网站联系,请发邮件至ctyunbbs@chinatelecom.cn沟通。

    上一篇:ballerina 学习十七 多线程编程

    下一篇:给定一个n*2的二维数组,表示有n个任务。

    相关文章

    2025-04-23 08:18:21

    行为模式---模版模式

    模版模式是设计模式行为模式的一种,它的核心思想是定义一个算法骨架,将某些步骤提取到到子类中实现。解决当项目中出现多个处理分支,这几个处理分支有重复步骤的时实现代码的复用和扩展。在这种模式下不用修改逻辑结构,使用继承机制中的子类来实现算法不同部分的处理逻辑。

    2025-04-23 08:18:21
    处理 , 子类 , 步骤 , 算法 , 逻辑
    2025-04-22 09:28:19

    【数据结构】时间复杂度与空间复杂度

    【数据结构】时间复杂度与空间复杂度

    2025-04-22 09:28:19
    函数 , 复杂度 , 时间 , 空间 , 算法
    2025-04-18 07:11:40

    文心一言 VS 讯飞星火 VS chatgpt (395)-- 算法导论25.1 10题

    给出一个有效算法来在图中找到最短长度的权重为负值的环路的长度(边的条数)。如果要写代码,请用go语言。

    2025-04-18 07:11:40
    权重 , 环路 , 算法 , 节点 , 长度
    2025-04-18 07:11:32

    文心一言 VS 讯飞星火 VS chatgpt (397)-- 算法导论25.2 2题

    传递闭包(Transitive Closure)是图论中的一个重要概念,它表示如果从一个顶点到另一个顶点存在一条路径,则在传递闭包中这两个顶点之间有一条直接路径。

    2025-04-18 07:11:32
    传递 , 算法 , 闭包 , 顶点
    2025-04-18 07:11:19

    一致性哈希算法介绍

    hash(散列、杂凑)函数,是将任意长度的数据映射到有限长度的域上。直观解释起来,就是对一串数据m进行杂糅,输出另一段固定长度的数据h,作为这段数据的特征(指纹)

    2025-04-18 07:11:19
    一致性 , 哈希 , 服务器 , 算法 , 节点
    2025-04-18 07:11:19

    文心一言 VS 讯飞星火 VS chatgpt (381)-- 算法导论24.5 1题

    在图论中,最短路径树(Shortest Path Tree, SPT)是一种从单个源点到所有其他节点的最短路径形成的树。给定一个加权图和一个源点,可以使用Dijkstra算法或Bellman-Ford算法来找到最短路径树。

    2025-04-18 07:11:19
    不同 , 算法 , 节点 , 路径
    2025-04-18 07:11:11

    文心一言 VS 讯飞星火 VS chatgpt (363)-- 算法导论24.3 5题

    要证明 Newman 教授的说法是错误的,我们可以构造一个有向图,展示 Dijkstra 算法不一定按照最短路径中边的出现次序对边进行松弛。

    2025-04-18 07:11:11
    Dijkstra , gt , 算法 , 路径
    2025-04-16 09:26:39

    文心一言 VS 讯飞星火 VS chatgpt (352)-- 算法导论24.1 3题

    Bellman-Ford 算法本身是一种动态规划算法,用于计算带权重的有向图中从单一源点到所有其他顶点的最短路径。

    2025-04-16 09:26:39
    算法 , 路径
    2025-04-16 09:26:39

    文心一言 VS 讯飞星火 VS chatgpt (354)-- 算法导论24.1 6题

    对于存在权重为负的环路的有向图,我们可以使用 Bellman-Ford 算法的一个变种来检测并列出该环路上的所有节点。

    2025-04-16 09:26:39
    权重 , 环路 , 算法 , 节点 , 顶点
    2025-04-16 09:26:27

    文心一言 VS 讯飞星火 VS chatgpt (348)-- 算法导论23.2 7题

    在图中加入一个新节点及其相关边后,要更新最小生成树(MST),通常意味着需要重新计算包含新节点的最小生成树,因为新节点的加入可能改变了原有MST的结构。

    2025-04-16 09:26:27
    最小 , 生成 , 算法 , 节点
    查看更多
    推荐标签

    作者介绍

    天翼云小翼
    天翼云用户

    文章

    32777

    阅读量

    4800644

    查看更多

    最新文章

    软件设计师教程(第5版)第4章 操作系统知识(更新中)

    2025-04-15 09:25:57

    选择排序(附代码详解)(C语言)

    2025-04-15 09:18:54

    完全背包代码模板

    2025-04-14 09:24:23

    Java实现常见排序算法(二)

    2025-04-11 07:08:33

    Java实现常见排序算法(一)

    2025-04-11 07:08:33

    用go语言,给定整数数组arr,求删除任一元素后, 新数组中长度为k的子数组累加和的最大值。

    2025-04-11 07:08:26

    查看更多

    热门文章

    Python:关于有序序列元素查找

    2023-02-13 07:38:09

    数据结构与算法之七 栈

    2022-11-17 12:37:20

    Python|统计匹配物品的数量

    2023-01-04 10:17:07

    java学习第三天笔记-运算符10-短路逻辑运算符56

    2023-04-07 06:41:50

    ESLint:可组装的JavaScript和JSX检查工具

    2023-02-23 07:57:25

    Filter&Listener笔记

    2023-02-22 08:37:42

    查看更多

    热门标签

    java Java python 编程开发 开发语言 代码 算法 线程 html Python 数组 C++ javascript c++ 元素
    查看更多

    相关产品

    弹性云主机

    随时自助获取、弹性伸缩的云服务器资源

    天翼云电脑(公众版)

    便捷、安全、高效的云电脑服务

    对象存储

    高品质、低成本的云上存储服务

    云硬盘

    为云上计算资源提供持久性块存储

    查看更多

    随机文章

    C++:递增递减运算符(16)

    第一季:13git分支相关命令【Java面试题】

    【JAVA】-- 简易超市管理系统窗口(四)(实现思路+每步代码)

    【C++二分查找】2439. 最小化数组中的最大值

    【C++ 曼哈顿距离 数学】1131. 绝对值表达式的最大值|2059

    算法:向上/向下调整算法

    • 7*24小时售后
    • 无忧退款
    • 免费备案
    • 专家服务
    售前咨询热线
    400-810-9889转1
    关注天翼云
    • 权益商城
    • 天翼云APP
    • 天翼云微信公众号
    服务与支持
    • 备案中心
    • 售前咨询
    • 智能客服
    • 自助服务
    • 工单管理
    • 客户公告
    • 涉诈举报
    账户管理
    • 管理中心
    • 订单管理
    • 余额管理
    • 发票管理
    • 充值汇款
    • 续费管理
    快速入口
    • 权益商城
    • 文档中心
    • 最新活动
    • 免费试用
    • 信任中心
    • 天翼云学堂
    云网生态
    • 甄选商城
    • 渠道合作
    • 云市场合作
    了解天翼云
    • 关于天翼云
    • 天翼云APP
    • 服务案例
    • 新闻资讯
    • 联系我们
    热门产品
    • 云电脑
    • 弹性云主机
    • 云电脑政企版
    • 天翼云手机
    • 云数据库
    • 对象存储
    • 云硬盘
    • Web应用防火墙
    • 服务器安全卫士
    • CDN加速
    热门推荐
    • 云服务备份
    • 边缘安全加速平台
    • 全站加速
    • 安全加速
    • 云服务器
    • 云主机
    • 智能边缘云
    • 应用编排服务
    • 微服务引擎
    • 共享流量包
    更多推荐
    • web应用防火墙
    • 密钥管理
    • 等保咨询
    • 安全专区
    • 应用运维管理
    • 云日志服务
    • 文档数据库服务
    • 云搜索服务
    • 数据湖探索
    • 数据仓库服务
    友情链接
    • 中国电信集团
    • 189邮箱
    • 天翼企业云盘
    • 天翼云盘
    ©2025 天翼云科技有限公司版权所有 增值电信业务经营许可证A2.B1.B2-20090001
    公司地址:北京市东城区青龙胡同甲1号、3号2幢2层205-32室
    • 用户协议
    • 隐私政策
    • 个人信息保护
    • 法律声明
    备案 京公网安备11010802043424号 京ICP备 2021034386号