1、映射操作
有了索引库,等于有了数据库中的 database
。
接下来就需要建索引库(index
)中的映射了,类似于数据库(database)中的表结构(table)。
创建数据库表需要设置字段名称,类型,长度,约束等
;索引库也一样,需要知道这个类型
下有哪些字段,每个字段有哪些约束信息,这就叫做映射(mapping
)。
1、创建映射
先创建索引: 在 Postman 中,向 ES 服务器发 PUT 请求 :http://127.0.0.1:9200/student/
然后在 Postman 中,向 ES 服务器发 PUT 请求 :http://127.0.0.1:9200/student/_mapping
请求体内容为:
{
"properties": {
"name": {
"type": "text",
"index": true
},
"sex": {
"type": "text",
"index": false
},
"age": {
"type": "long",
"index": false
}
}
}
服务器响应结果如下:
映射数据说明:
-
字段名:
任意填写
,下面指定许多属性,例如:title、subtitle、images、price -
type:类型,Elasticsearch 中支持的数据类型非常丰富,说几个关键的:
- String 类型,又分两种:
- text:可分词
- keyword:不可分词,数据会作为完整字段进行匹配
- Numerical:数值类型,分两类
- 基本数据类型:long、integer、short、byte、double、float、half_float
- 浮点数的高精度类型:scaled_float
- Date:日期类型
- Array:数组类型
- Object:对象
- String 类型,又分两种:
-
index:是否索引,默认为 true,也就是说你不进行任何配置,所有字段都会被索引。
- true:字段会被索引,则可以用来进行搜索
- false:字段不会被索引,不能用来搜索
-
store:是否将数据进行独立存储,默认为 false
- 原始的文本会存储在_source 里面,默认情况下其他提取出来的字段都不是独立存储的,是从_source 里面提取出来的。当然你也可以独立的存储某个字段,只要设置"store": true 即可,获取独立存储的字段要比从_source 中解析快得多,但是也会占用更多的空间,所以要根据实际业务需求来设置。
-
analyzer:分词器,这里的
ik_max_word
即使用ik 分词器,
后面会有专门的章节学习
2、查看映射
在 Postman 中,向 ES 服务器发 GET 请求 http://127.0.0.1:9200/student/_mapping
服务器响应结果如下:
3、索引映射关联
在 Postman 中,向 ES 服务器发 PUT 请求 :http://127.0.0.1:9200/student1
请求数据:
{
"settings": {},
"mappings": {
"properties": {
"name": {
"type": "text",
"index": true
},
"sex": {
"type": "text",
"index": false
},
"age": {
"type": "long",
"index": false
}
}
}
}
服务器响应结果如下:
2、高级查询
Elasticsearch 提供了基于 JSON 提供完整的查询 DSL 来定义查询
定义数据 :
# POST /student/_doc/1001
{
"name":"zhangsan",
"nickname":"zhangsan",
"sex":"男",
"age":30
}
# POST /student/_doc/1002
{
"name":"lisi",
"nickname":"lisi",
"sex":"男",
"age":20
}
# POST /student/_doc/1003
{
"name":"wangwu",
"nickname":"wangwu",
"sex":"女",
"age":40
}
# POST /student/_doc/1004
{
"name":"zhangsan1",
"nickname":"zhangsan1",
"sex":"女",
"age":50
}
# POST /student/_doc/1005
{
"name":"zhangsan2",
"nickname":"zhangsan2",
"sex":"女",
"age":30
}
_doc
有点类似于数据的表的意思,由于都是_doc就好像都在一张表上
,_doc不同就不同一张表上
一共添加了5条数据。
1、查询所有文档
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"match_all": {}
}
}
# "query":这里的 query 代表一个查询对象,里面可以有不同的查询属性
# "match_all":查询类型,例如:match_all(代表查询所有), match,term , range 等等
# {查询条件}:查询条件会根据类型的不同,写法也有差异
服务器响应结果如下:
{
"took【查询花费时间,单位毫秒】": 1116,
"timed_out【是否超时】": false,
"_shards【分片信息】": {
"total【总数】": 1,
"successful【成功】": 1,
"skipped【忽略】": 0,
"failed【失败】": 0
},
"hits【搜索命中结果】": {
"total"【搜索条件匹配的文档总数】: {
"value"【总命中计数的值】: 3,
"relation"【计数规则】: "eq"#eq 表示计数准确, gte 表示计数不准确
},
"max_score【匹配度分值】": 1.0,
"hits【命中结果集合】": [。。。
}
]
}
}
2、匹配查询
match 匹配类型查询,会把查询条件进行分词
,然后进行查询,多个词条之间是 or 的关系。
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"match": {
"name": "zhangsan"
}
}
}
服务器响应结果为:
3、字段匹配查询
multi_match 与 match 类似,不同的是它可以在多个字段中查询。
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"multi_match": {
"query": "zhangsan",
"fields": ["name","nickname"]
}
}
}
服务器响应结果:
4、关键字精确查询
term 查询,精确的关键词匹配查询,不对查询条件进行分词。
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"term": {
"name": {
"value": "zhangsan"
}
}
}
}
服务器响应结果:
5、多关键字精确查询
terms 查询和 term 查询一样,但它允许你指定多值进行匹配。
如果这个字段包含了指定值中的任何一个值,那么这个文档满足条件,类似于 mysql 的 in
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"terms": {
"name": ["zhangsan","lisi"]
}
}
}
服务器响应结果:
6、指定查询字段
默认情况下,Elasticsearch 在搜索的结果中,会把文档中保存在 _source
的所有字段都返回。
如果我们只想获取其中的部分字段,我们可以添加_source
的过滤
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"_source":["name","nickname"],
"query":{
"terms":{
"nickname":["lisi"]
}
}
}
服务器响应结果:
7、 过滤字段
我们也可以通过:
- includes:来指定想要显示的字段
- excludes:来指定不想要显示的字段
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"_source":{
"includes":["name","nickname"]
},
"query":{
"terms":{
"nickname":["zhangsan"]
}
}
}
服务器响应结果:
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"_source":{
"excludes":["name","nickname"]
},
"query":{
"terms":{
"nickname":["zhangsan"]
}
}
}
服务器响应结果:
8、组合查询
bool
把各种其它查询通过must
(必须 )、must_not
(必须不)、should
(应该)的方
式进行组合
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"bool": {
"must": [{
"match": {
"name": "zhangsan"
}
}],
"must_not": [{
"match": {
"age": "40"
}
}],
"should": [{
"match": {
"sex": "男"
}
}]
}
}
}
服务器响应结果:
9、范围查询
range 查询找出那些落在指定区间内的数字或者时间。range 查询允许以下字符
操作符 | 说明 |
---|---|
gt | 大于> |
gte | 大于等于>= |
lt | 小于< |
lte | 小于等于<= |
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"range": {
"age": {
"gte": 30,
"lte": 35
}
}
}
}
服务器响应结果:
10、 模糊查询
返回包含与搜索字词相似的字词的文档。
编辑距离是将一个术语转换为另一个术语所需的一个字符更改的次数。这些更改可以包括:
- 更改字符(box → fox)
- 删除字符(black → lack)
- 插入字符(sic → sick)
- 转置两个相邻字符(act → cat)
为了找到相似的术语,fuzzy 查询会在指定的编辑距离内创建一组搜索词的所有可能的变体或扩展。然后查询返回每个扩展的完全匹配。
通过 fuzziness 修改编辑距离。一般使用默认值 AUTO,根据术语的长度生成编辑距离。
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"fuzzy": {
"name": {
"value": "zhangsan"
}
}
}
}
服务器响应结果:
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"fuzzy": {
"name": {
"value": "zhangsan",
"fuzziness": 2
}
}
}
}
服务器响应结果:
11、 单字段排序
sort 可以让我们按照不同的字段进行排序,并且通过 order 指定排序的方式。desc 降序,asc升序。
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query":{
"match":{
"name":"zhangsan"
}
},
"sort":[
{
"age":{
"order":"desc"
}
}
]
}
服务器响应结果:
12、多字段排序
假定我们想要结合使用 age 和 _score 进行查询,并且匹配的结果首先按照年龄排序,然后
按照相关性得分排序
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"match_all": {}
},
"sort": [{
"age": {
"order": "desc"
}
},
{
"_score": {
"order": "desc"
}
}
]
}
服务器响应结果:
13、 高亮查询
在进行关键字搜索时,搜索出的内容中的关键字会显示不同的颜色,称之为高亮。
- 在百度搜索"京东"
-
Elasticsearch 可以对查询内容中的关键字部分,进行标签和样式(高亮)的设置。
在使用match
查询的同时,加上一个 highlight 属性: - pre_tags:前置标签
- post_tags:后置标签
- fields:需要高亮的字段
- title:这里声明 title 字段需要高亮,后面可以为这个字段设置特有配置,也可以空
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"match": {
"name": "zhangsan"
}
},
"highlight": {
"pre_tags": "<font color='red'>",
"post_tags": "</font>",
"fields": {
"name": {}
}
}
}
服务器响应结果:
14、分页查询
from:当前页的起始索引,默认从 0
开始。 from = (pageNum - 1) * size
size:每页显示多少条
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"query": {
"match_all": {}
},
"sort": [{
"age": {
"order": "desc"
}
}],
"from": 0,
"size": 2
}
服务器响应结果:
15、聚合查询
聚合允许使用者对 es 文档进行统计分析,类似与关系型数据库中的 group by
,当然还有很多其他的聚合,例如取最大值、平均值
等等。
- 对某个字段取最大值 max
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"aggs":{
"max_age":{
"max":{
"field":"age"
}
}
},
"size":0
}
服务器响应结果:
- 对某个字段取最小值 min
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"aggs": {
"min_age": {
"min": {
"field": "age"
}
}
},
"size": 0
}
- 对某个字段求和 sum
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"aggs": {
"sum_age": {
"sum": {
"field": "age"
}
}
},
"size": 0
}
- 对某个字段取平均值 avg
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"aggs": {
"avg_age": {
"avg": {
"field": "age"
}
}
},
"size": 0
}
- 对某个字段的值进行去重之后再取总数
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"aggs": {
"distinct_age": {
"cardinality": {
"field": "age"
}
}
},
"size": 0
}
- State 聚合
stats 聚合,对某个字段一次性返回count,max,min,avg 和 sum 五个指标
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/student/_search
{
"aggs": {
"stats_age": {
"stats": {
"field": "age"
}
}
},
"size": 0
}
16、 桶聚合查询
桶聚和相当于 sql 中的 group by
语句
1. terms 聚合,分组统计
在 Postman 中,向 ES 服务器发GET
请求 :http://127.0.0.1:9200/student/_search
{
"aggs": {
"age_groupby": {
"terms": {
"field": "age"
}
}
},
"size": 0
}
服务器响应结果:
- 在 terms 分组下再进行聚合
在 Postman 中,向 ES 服务器发GET
请求 :http://127.0.0.1:9200/student/_search
{
"aggs": {
"age_groupby": {
"terms": {
"field": "age"
},
"aggs": {
"sum_age": {
"sum": {
"field": "age"
}
}
}
}
},
"size": 0
}
服务器响应结果: