1. 分布式系统的近似统计算法#
2. Min 聚合分析的执行流程
3. terms Aggregation 的返回值
在 Terms Aggregation 的返回中有两个特殊的数值
doc_count_error_upper_bound
:被遗漏的 term 分桶,包含的文档,有可能的最大值sum_other_doc_count
: 处理返回结果 bucket 的 terms 以外,其他 terms 的文档总数(总数 -返回的总数)
4. Terms 聚合分析的执行流程
5. Terms 不正确的案例
6. 如何解决 Terms 不准的问题:提升 shard_size 的参数
- Terms 聚合分析不准的原因,数据分散在多个分片上,Coordinating Node 无法获取数据全貌
- 解决方案 1:当数据量不大时,设置
Primary Shard
为 1;实现准确性 - 解决方案 2:在分布式数据上,设置
shard_size
参数,提高精确度 - 原理:每次从 Shard 上额外多获取数据,提升准确率
7. 打开 show_term_doc_count_error
8. shard_size 设定
调整 shard size
大小,降低 doc_count_error_upper_bound
来提升准确度
- 增加整体计算量,提高了准确率,但会降低相应时间
Shard Size 默认大小设定
- shard size = size * 1.5 +10
9. demo
9.1 插入数据
DELETE my_flights
PUT my_flights
{
"settings": {
"number_of_shards": 20
},
"mappings" : {
"properties" : {
"AvgTicketPrice" : {
"type" : "float"
},
"Cancelled" : {
"type" : "boolean"
},
"Carrier" : {
"type" : "keyword"
},
"Dest" : {
"type" : "keyword"
},
"DestAirportID" : {
"type" : "keyword"
},
"DestCityName" : {
"type" : "keyword"
},
"DestCountry" : {
"type" : "keyword"
},
"DestLocation" : {
"type" : "geo_point"
},
"DestRegion" : {
"type" : "keyword"
},
"DestWeather" : {
"type" : "keyword"
},
"DistanceKilometers" : {
"type" : "float"
},
"DistanceMiles" : {
"type" : "float"
},
"FlightDelay" : {
"type" : "boolean"
},
"FlightDelayMin" : {
"type" : "integer"
},
"FlightDelayType" : {
"type" : "keyword"
},
"FlightNum" : {
"type" : "keyword"
},
"FlightTimeHour" : {
"type" : "keyword"
},
"FlightTimeMin" : {
"type" : "float"
},
"Origin" : {
"type" : "keyword"
},
"OriginAirportID" : {
"type" : "keyword"
},
"OriginCityName" : {
"type" : "keyword"
},
"OriginCountry" : {
"type" : "keyword"
},
"OriginLocation" : {
"type" : "geo_point"
},
"OriginRegion" : {
"type" : "keyword"
},
"OriginWeather" : {
"type" : "keyword"
},
"dayOfWeek" : {
"type" : "integer"
},
"timestamp" : {
"type" : "date"
}
}
}
}
9.2 将索引kibana_sample_data_flights数据导入my_flights
POST _reindex
{
"source": {
"index": "kibana_sample_data_flights"
},
"dest": {
"index": "my_flights"
}
}
返回输出
{
"took" : 3221,
"timed_out" : false,
"total" : 13059,
"updated" : 0,
"created" : 13059,
"deleted" : 0,
"batches" : 14,
"version_conflicts" : 0,
"noops" : 0,
"retries" : {
"bulk" : 0,
"search" : 0
},
"throttled_millis" : 0,
"requests_per_second" : -1.0,
"throttled_until_millis" : 0,
"failures" : [ ]
}
GET kibana_sample_data_flights/_count
GET my_flights/_count
返回输出:
{
"count" : 13059,
"_shards" : {
"total" : 20,
"successful" : 20,
"skipped" : 0,
"failed" : 0
}
}
get kibana_sample_data_flights/_search
GET kibana_sample_data_flights/_search
{
"size": 0,
"aggs": {
"weather": {
"terms": {
"field":"OriginWeather",
"size":5,
"show_term_doc_count_error":true
}
}
}
}
返回输出:
{
"took" : 10,
"timed_out" : false,
"_shards" : {
"total" : 1,
"successful" : 1,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"weather" : {
"doc_count_error_upper_bound" : 0,
"sum_other_doc_count" : 2932,
"buckets" : [
{
"key" : "Clear",
"doc_count" : 2324,
"doc_count_error_upper_bound" : 0
},
{
"key" : "Cloudy",
"doc_count" : 2319,
"doc_count_error_upper_bound" : 0
},
{
"key" : "Rain",
"doc_count" : 2214,
"doc_count_error_upper_bound" : 0
},
{
"key" : "Sunny",
"doc_count" : 2209,
"doc_count_error_upper_bound" : 0
},
{
"key" : "Thunder & Lightning",
"doc_count" : 1061,
"doc_count_error_upper_bound" : 0
}
]
}
}
}
GET my_flights/_search
{
"size": 0,
"aggs": {
"weather": {
"terms": {
"field":"OriginWeather",
"size":1,
"shard_size":1,
"show_term_doc_count_error":true
}
}
}
}
返回输出:
{
"took" : 18,
"timed_out" : false,
"_shards" : {
"total" : 20,
"successful" : 20,
"skipped" : 0,
"failed" : 0
},
"hits" : {
"total" : {
"value" : 10000,
"relation" : "gte"
},
"max_score" : null,
"hits" : [ ]
},
"aggregations" : {
"weather" : {
"doc_count_error_upper_bound" : 2511,
"sum_other_doc_count" : 12022,
"buckets" : [
{
"key" : "Clear",
"doc_count" : 1037,
"doc_count_error_upper_bound" : 1474
}
]
}
}
}