给定2D空间中四个点的坐标 p1, p2, p3 和 p4,如果这四个点构成一个正方形,则返回 true 。 点的坐标 pi 表示为 [xi, yi] 。输入 不是 按任何顺序给出的。 一个 有效的正方形 有四条等边和四个等角(90度角)。
解: 题目比较简单,按照定义去判断。 我这里的思路是找到点p1的对角点,然后判断四条边相等(两组对面分别相等的四边形是平行四边形),并且有直角三角形(有直角的,并且四条边相等的平行四边形是正方形)。
最开始的版本,非常长,并且很丑:
from typing import List class Solution: @staticmethod def distance2(p1, p2): return (p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2 def validSquare(self, p1: List[int], p2: List[int], p3: List[int], p4: List[int]) -> bool: p_list = [p1,p2,p3,p4] sorted_p_list = sorted(p_list) if sorted_p_list[0] == sorted_p_list[1] or sorted_p_list[2] == sorted_p_list[3]: return False distance2s = [ self.distance2(p1, point) for point in p_list ] # 找四条等边 fourEqualEdge = False fourEqualAngle = False for point in p_list: if point == p1 : continue if self.distance2(p1, point) == max(distance2s): # point 是对点 other_points = [p for p in p_list if p != point and p != p1] distance2s_p2 = [self.distance2(p, point) for p in other_points] distance2s_p1 = [self.distance2(p, p1) for p in other_points] edges = distance2s_p1 edges.extend(distance2s_p2) #print(f"edges={edges}") if all( x == edges[0] for x in edges): fourEqualEdge = True if 2*edges[0] == max(distance2s): fourEqualAngle = True return fourEqualEdge and fourEqualAngle
进行了一些修改: 规范了函数名称和变量名称; 去掉了无用的变量:p_list,fourEqualEdge,fourEqualAngle; 使用any()和all() 代替循环。 代码看起来简洁了很多:
from typing import List class Solution: @staticmethod def distance(point1, point2): """point1和point2距离的平方""" return (point1[0] - point2[0]) ** 2 + (point1[1] - point2[1]) ** 2 def validSquare(self, p1: List[int], p2: List[int], p3: List[int], p4: List[int]) -> bool: sorted_p_list = sorted([p1, p2, p3, p4]) # 如果有重复的点,则返回False if any(sorted_p_list[i]==sorted_p_list[i+1] for i in range(3)) : return False max_distance = max([self.distance(p1, point) for point in sorted_p_list]) for point in sorted_p_list: if self.distance(p1, point) == max_distance: # point 是对角点 other_points = [p for p in sorted_p_list if p != point and p != p1] distance2s_p2 = [self.distance(p, point) for p in other_points] distance2s_p1 = [self.distance(p, p1) for p in other_points] distance2s_p1.extend(distance2s_p2) edges = distance2s_p1 if all(x == edges[0] for x in edges) and 2 * edges[0] == max_distance: return True return False