OVN 架构
如上图是 OVN 官方给出的架构图,各个组件的大致功能如下:
CMS
:云管平台,给最终用户使用的管理端,比如 OpenStack;OVN/CMS plugin
:是CMS
的一部分,将用户配置的逻辑网络转换为 OVN 定义的结构数据,写入北向数据库中;OVN Northbound DB
:OVN 北向数据库,是ovsdb-server
实例;ovn-northd
:将 OVN 北向数据库中的逻辑网络信息转换为 OVN 南向数据库的物理网络配置,并写入 OVN 南向数据库;OVN Southbound DB
:OVN 南向数据库,是ovsdb-server
实例;ovn-controller
:运行在每个hypervisor
节点上,将 OVN 南向数据库中的物理网络配置转换为 OpenFlow 流表,并下发到 OVS;ovs-vswitchd
:OVS 的核心模块;ovsdb-server
:存储 OVS 的配置信息,包括端口、vlan、QoS 等;
如上的这些组件可以分为两大类:
central
:中心节点,包括OVN/CMS plugin
、OVN Northbound DB
、ovn-northd
、OVN Southbound DB
;hypervisor
:工作节点,包括ovn-controller
、ovs-vswitchd
、ovsdb-server
;
OVN 从北到南的组件的处理过程,就是将逻辑网络
转换为物理网络
的过程,后面我们的实验会让大家慢慢理解这一点。
在本文中,我们会提供ovs1
和ovs2
两台机器,来搭建实验环境,其中ovs1
和ovs2
都将作为hypervisor
角色,而ovs1
会同时兼具central
角色。
Hostname | OS | IP | |
---|---|---|---|
ovs1 | Ubuntu 22.04 | 192.168.31.154 | central + hypervisor |
ovs2 | Ubuntu 22.04 | 192.168.31.47 | hypervisor |
环境搭建
安装 OVS
在ovs1
和ovs2
中都需要安装 OVS,这里我们直接通过apt
安装即可:
apt install -y openvswitch-switch
在安装完成后,会以服务方式启动ovs-vswitchd
和ovsdb-server
进程,可以查看一下是否正常安装:
$ ps -ef | grep -i ovs
root 3409 1 0 15:27 ? 00:00:00 ovsdb-server /etc/openvswitch/conf.db -vconsole:emer -vsyslog:err -vfile:info --remote=punix:/var/run/openvswitch/db.sock --private-key=db:Open_vSwitch,SSL,private_key --certificate=db:Open_vSwitch,SSL,certificate --bootstrap-ca-cert=db:Open_vSwitch,SSL,ca_cert --no-chdir --log-file=/var/log/openvswitch/ovsdb-server.log --pidfile=/var/run/openvswitch/ovsdb-server.pid --detach
root 3472 1 0 15:27 ? 00:00:00 ovs-vswitchd unix:/var/run/openvswitch/db.sock -vconsole:emer -vsyslog:err -vfile:info --mlockall --no-chdir --log-file=/var/log/openvswitch/ovs-vswitchd.log --pidfile=/var/run/openvswitch/ovs-vswitchd.pid --detach
其中ovs-vswitchd
负责与 OpenFlow 控制器通信,交换 OpenFlow 流表规则。而ovsdb-server
则是一个文件数据库,用于存储 OVS 的配置信息,数据库 schema 定义在/usr/share/openvswitch/vswitch.ovsschema
,数据库文件在/etc/openvswitch/conf.db
。
通过ovsdb-client
工具可以对该文件数据库进行操作,可以看到 OVS 定义的数据库和数据表:
$ ovsdb-client list-dbs unix:/var/run/openvswitch/db.sock
Open_vSwitch
_Server
$ ovsdb-client list-tables unix:/var/run/openvswitch/db.sock
Table
-------------------------
Controller
Bridge
Queue
IPFIX
NetFlow
Open_vSwitch
CT_Zone
QoS
Datapath
SSL
Port
sFlow
Flow_Sample_Collector_Set
CT_Timeout_Policy
Mirror
Flow_Table
Interface
AutoAttach
Manager
安装 OVN
OVS 安装完毕后,我们继续需要安装 OVN 组件,如上文所述,我们将ovs1
同时作为central
和hypervisor
,将ovs2
仅作为hypervisor
。
首先在ovs1
上安装hypervisor
相关组件,因为刚才我们已经在两个节点都装了 OVS,所以这里我们只需要安装 OVN 中的ovn-controller
即可:
$ apt install -y ovn-common ovn-host
可以看到ovn-controller
组件已经正常启动:
$ systemctl status ovn-controller.service
● ovn-controller.service - Open Virtual Network host control daemon
Loaded: loaded (/lib/systemd/system/ovn-controller.service; static)
Active: active (running) since Thu 2023-11-09 16:26:18 CST; 31s ago
Process: 4837 ExecStart=/usr/share/ovn/scripts/ovn-ctl start_controller --ovn-manage-ovsdb=no --no-monitor $OVN_CTL_OPTS (code=exited, status=0/SUCCESS)
Main PID: 4865 (ovn-controller)
Tasks: 4 (limit: 9431)
Memory: 1.8M
CPU: 70ms
CGroup: /system.slice/ovn-controller.service
└─4865 ovn-controller unix:/var/run/openvswitch/db.sock -vconsole:emer -vsyslog:err -vfile:info --no-chdir --log-file=/var/log/ovn/ovn-controller.log --pidfile=/var/run/ovn/ovn-controller.pid
然后再在ovs1
上安装central
组件:
$ apt install -y ovn-central
在安装完成后,可以看到 OVN 的南北向数据库都已经正常启动,跟 OVS 的 DB 一样,它们都是ovsdb-server
的实例,只是对应的 schema 定义不同。
$ root@ovs1:~# ps -ef | grep -i ovsdb-server
...
root 5248 1 0 16:27 ? 00:00:00 ovsdb-server -vconsole:off -vfile:info --log-file=/var/log/ovn/ovsdb-server-nb.log --remote=punix:/var/run/ovn/ovnnb_db.sock --pidfile=/var/run/ovn/ovnnb_db.pid --unixctl=/var/run/ovn/ovnnb_db.ctl --remote=db:OVN_Northbound,NB_Global,connections --private-key=db:OVN_Northbound,SSL,private_key --certificate=db:OVN_Northbound,SSL,certificate --ca-cert=db:OVN_Northbound,SSL,ca_cert --ssl-protocols=db:OVN_Northbound,SSL,ssl_protocols --ssl-ciphers=db:OVN_Northbound,SSL,ssl_ciphers /var/lib/ovn/ovnnb_db.db
root 5252 1 0 16:27 ? 00:00:00 ovsdb-server -vconsole:off -vfile:info --log-file=/var/log/ovn/ovsdb-server-sb.log --remote=punix:/var/run/ovn/ovnsb_db.sock --pidfile=/var/run/ovn/ovnsb_db.pid --unixctl=/var/run/ovn/ovnsb_db.ctl --remote=db:OVN_Southbound,SB_Global,connections --private-key=db:OVN_Southbound,SSL,private_key --certificate=db:OVN_Southbound,SSL,certificate --ca-cert=db:OVN_Southbound,SSL,ca_cert --ssl-protocols=db:OVN_Southbound,SSL,ssl_protocols --ssl-ciphers=db:OVN_Southbound,SSL,ssl_ciphers /var/lib/ovn/ovnsb_db.db
南北向数据库具体的表定义可以分别参考如下 spec,我们这里仅列出所有表名,方便大家理解南北向数据库逻辑上的区别:
$ ovsdb-client list-tables unix:/var/run/ovn/ovnnb_db.sock
Table
---------------------------
Logical_Router_Static_Route
Meter_Band
NB_Global
ACL
Copp
Logical_Switch
Meter
Load_Balancer_Group
HA_Chassis_Group
Address_Set
BFD
NAT
Load_Balancer
QoS
DNS
Forwarding_Group
Connection
SSL
Load_Balancer_Health_Check
Gateway_Chassis
HA_Chassis
Logical_Router_Port
Logical_Router_Policy
Logical_Router
Port_Group
Logical_Switch_Port
DHCP_Options
$ ovsdb-client list-tables unix:/var/run/ovn/ovnsb_db.sock
Table
----------------
RBAC_Role
FDB
RBAC_Permission
Meter_Band
SB_Global
Port_Binding
Meter
HA_Chassis_Group
Address_Set
BFD
Load_Balancer
DNS
IP_Multicast
Connection
Logical_DP_Group
Encap
SSL
Gateway_Chassis
DHCPv6_Options
Chassis_Private
HA_Chassis
IGMP_Group
Service_Monitor
Chassis
Port_Group
MAC_Binding
Multicast_Group
Controller_Event
DHCP_Options
Datapath_Binding
Logical_Flow
同时,在 ovs2 上也要安装工作节点的组件:
$ apt install ovn-host ovn-common
ovn-controller 连接到 ovnsb-db
现在我们在ovs1
上安装了central
和hypervisor
组件,在ovs2
上安装了hypervisor
组件,但现有的组件连接情况如下:
可以看到ovn-controller
此时还没有连接到OVN Southbound DB
,所以我们首先开放南向数据库端口6442
,该端口后续会提供给所有ovn-controller
进行连接。
$ ovn-sbctl set-connection ptcp:6642:192.168.31.154
netstat -lntp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
...
tcp 0 0 192.168.31.154:6642 0.0.0.0:* LISTEN 5252/ovsdb-server
...
将ovs1
上的ovn-controller
连接到 OVN 南向数据库192.168.31.154:6642
。
$ ovs-vsctl set Open_vSwitch . external-ids:ovn-remote="tcp:192.168.31.154:6642" external-ids:ovn-encap-ip="192.168.31.154" external-ids:ovn-encap-type=geneve external-ids:system-id=ovs1
简单解释一下这条命令:
ovs-vsctl
会直接操作 OVS 的ovsdb-server
,这里指明会操作Open_vSwitch
数据库;external-ids
字段可以参考官方的说明:Key-value pairs for use by external frameworks that integrate with Open vSwitch, rather than by Open vSwitch itself
,可以看到这个字段更多是用于跟第三方系统的集成,而非 OVS 自行使用。结合刚才看到的 OVN 的架构图,很容易联想到这些字段主要是ovn-controller
使用;ovn-remote
代表 OVN 南向数据库的地址,ovn-controller
会使用该地址来连接到 OVN 南向数据库;ovn-encap-ip
代表其它的chassis
在使用隧道协议连接到当前chassis
时需要使用的 IP,而ovn-encap-type
则指明隧道协议的类型,ovn-controller
在连接到南向数据库后,会默认创建br-int
实例,并根据当前的配置对br-int
进行初始化;system-id
用于表示 OVS 物理主机的唯一标识;
在ovs1
上我们同时查看ovn-controller
的日志,默认路径是/var/log/ovn/ovn-controller.log
,可以看到已经正常连接到 OVN 南向数据库,并且会进行一些初始操作,比如创建br-int
网桥,行为符合我们的预期。
$ tail -200f /var/log/ovn/ovn-controller.log
2023-11-09T08:40:09.282Z|00009|reconnect|INFO|tcp:192.168.31.154:6642: connecting...
2023-11-09T08:40:09.282Z|00010|reconnect|INFO|tcp:192.168.31.154:6642: connected
2023-11-09T08:40:09.288Z|00011|features|INFO|unix:/var/run/openvswitch/br-int.mgmt: connecting to switch
2023-11-09T08:40:09.288Z|00012|rconn|INFO|unix:/var/run/openvswitch/br-int.mgmt: connecting...
2023-11-09T08:40:09.288Z|00013|features|INFO|OVS Feature: ct_zero_snat, state: supported
2023-11-09T08:40:09.288Z|00014|main|INFO|OVS feature set changed, force recompute.
2023-11-09T08:40:09.288Z|00015|ofctrl|INFO|unix:/var/run/openvswitch/br-int.mgmt: connecting to switch
2023-11-09T08:40:09.288Z|00016|rconn|INFO|unix:/var/run/openvswitch/br-int.mgmt: connecting...
2023-11-09T08:40:09.289Z|00017|rconn|INFO|unix:/var/run/openvswitch/br-int.mgmt: connected
2023-11-09T08:40:09.289Z|00018|main|INFO|OVS OpenFlow connection reconnected,force recompute.
2023-11-09T08:40:09.289Z|00019|rconn|INFO|unix:/var/run/openvswitch/br-int.mgmt: connected
2023-11-09T08:40:09.290Z|00020|main|INFO|OVS feature set changed, force recompute.
2023-11-09T08:40:09.290Z|00001|pinctrl(ovn_pinctrl0)|INFO|unix:/var/run/openvswitch/br-int.mgmt: connecting to switch
2023-11-09T08:40:09.290Z|00002|rconn(ovn_pinctrl0)|INFO|unix:/var/run/openvswitch/br-int.mgmt: connecting...
2023-11-09T08:40:09.291Z|00003|rconn(ovn_pinctrl0)|INFO|unix:/var/run/openvswitch/br-int.mgmt: connected
在ovs2
上也要执行类似的操作,将ovs2
上的ovn-controller
也连接到ovs1
上的 OVN 南向数据库。
$ ovs-vsctl set Open_vSwitch . external-ids:ovn-remote="tcp:192.168.31.154:6642" external-ids:ovn-encap-ip="192.168.31.47" external-ids:ovn-encap-type=geneve external-ids:system-id=ovs2
此时在ovs1
上,我们能看到 OVN 的chassis
已经配置好:
ovn-sbctl show
Chassis ovs2
hostname: ovs2
Encap geneve
ip: "192.168.31.47"
options: {csum="true"}
Chassis ovs1
hostname: ovs1
Encap geneve
ip: "192.168.31.154"
options: {csum="true"}
同时在ovs1
和ovs2
上,能看到默认创建的br-int
网桥,以及type: geneve
的端口:
# ovs1
$ ovs-vsctl show
780cc937-43c3-403b-969c-80d3cf43c97f
Bridge
fail_mode: secure
datapath_type: system
Port br-int
Interface br-int
type: internal
Port ovn-ovs2-0
Interface ovn-ovs2-0
type: geneve
options: {csum="true", key=flow, remote_ip="192.168.31.47"}
ovs_version: "2.17.7"
# ovs2
$ovs-vsctl show
6b213440-7418-4627-96c5-cb7210882373
Bridge br-int
fail_mode: secure
datapath_type: system
Port br-int
Interface br-int
type: internal
Port ovn-ovs1-0
Interface ovn-ovs1-0
type: geneve
options: {csum="true", key=flow, remote_ip="192.168.31.154"}
ovs_version: "2.17.7"
由于隧道协议使用了geneve
,所以在物理机上会多出一个genev_sys_6081
设备,会在内核层面监听6081
端口,后续所有走隧道协议的数据包都会经过该端口:
$ ip a
...
6: br-int: <BROADCAST,MULTICAST> mtu 1500 qdisc noop state DOWN group default qlen 1000
link/ether e2:22:de:8e:a0:d3 brd ff:ff:ff:ff:ff:ff
7: genev_sys_6081: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 65000 qdisc noqueue master ovs-system state UNKNOWN group default qlen 1000
link/ether 3e:f5:7a:03:5b:fa brd ff:ff:ff:ff:ff:ff
inet6 fe80::f022:ffff:fed1:9233/64 scope link
valid_lft forever preferred_lft forever
root@ovs1:~# ip -d link show dev genev_sys_6081
7: genev_sys_6081: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 65000 qdisc noqueue master ovs-system state UNKNOWN mode DEFAULT group default qlen 1000
link/ether 3e:f5:7a:03:5b:fa brd ff:ff:ff:ff:ff:ff promiscuity 1 minmtu 68 maxmtu 65465
geneve external id 0 ttl auto dstport 6081 udp6zerocsumrx
openvswitch_slave addrgenmode eui64 numtxqueues 1 numrxqueues 1 gso_max_size 65536 gso_max_segs 65535
$ netstat -lnup
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
...
udp 0 0 0.0.0.0:6081 0.0.0.0:* -
...
OVN 实践
Logic Switch
我们先通过 OVN 来搭建一个 Logic Switch,其最终的逻辑结构如下,目前可以还有一些疑惑,但没关系,我们在搭建的过程中来逐步理解其中的细节。
首先,整个图除最顶部的 Logic Switch 部分外,其它部分应该是比较熟悉的(不清楚的推荐看本文顶部的前置阅读),所以我们先将下半部分的环境搭建出来。在ovs1
上,创建命名空间ns1
,并添加 veth pair 设备对,将其一端放入ns1
,另一端接入br-int
:
$ ip netns add ns1
$ ip link add veth0 type veth peer name veth0_br
$ ip link set veth0 netns ns1
$ ip netns exec ns1 ip link set veth0 address 00:00:00:00:00:01
$ ip netns exec ns1 ip addr add 10.1.1.1/24 dev veth0
$ ip netns exec ns1 ip link set veth0 up
$ ip link set veth0_br up
$ ovs-vsctl add-port br-int veth0_br
$ ovs-vsctl show
780cc937-43c3-403b-969c-80d3cf43c97f
Bridge br-int
fail_mode: secure
datapath_type: system
Port veth0_br
Interface veth0_br
Port br-int
Interface br-int
type: internal
Port ovn-ovs2-0
Interface ovn-ovs2-0
type: geneve
options: {csum="true", key=flow, remote_ip="192.168.31.47"}
ovs_version: "2.17.7"
在ovs2
上也执行类似的动作:
$ ip netns add ns1
$ ip link add veth0 type veth peer name veth0_br
$ ip link set veth0 netns ns1
$ ip netns exec ns1 ip link set veth0 address 00:00:00:00:00:02
$ ip netns exec ns1 ip addr add 10.1.1.2/24 dev veth0
$ ip netns exec ns1 ip link set veth0 up
$ ip link set veth0_br up
$ ovs-vsctl add-port br-int veth0_br
$ ovs-vsctl show
6b213440-7418-4627-96c5-cb7210882373
Bridge br-int
fail_mode: secure
datapath_type: system
Port br-int
Interface br-int
type: internal
Port ovn-ovs1-0
Interface ovn-ovs1-0
type: geneve
options: {csum="true", key=flow, remote_ip="192.168.31.154"}
Port veth0_br
Interface veth0_br
ovs_version: "2.17.7"
此时已搭建好的环境如下图所示:
这时候如果通过ovs1
的veth0
去 ping ovs2
的veth0
,是无法 ping 通的,我们可以看下两边的br-int
的流表:
# ovs1
$ ovs-ofctl dump-flows br-int
cookie=0x0, duration=1319.155s, table=0, n_packets=0, n_bytes=0, priority=100,in_port="ovn-ovs2-0" actions=move:NXM_NX_TUN_ID[0..23]->OXM_OF_METADATA[0..23],move:NXM_NX_TUN_METADATA0[16..30]->NXM_NX_REG14[0..14],move:NXM_NX_TUN_METADATA0[0..15]->NXM_NX_REG15[0..15],resubmit(,38)
cookie=0x0, duration=1319.179s, table=37, n_packets=0, n_bytes=0, priority=150,reg10=0x2/0x2 actions=resubmit(,38)
cookie=0x0, duration=1319.179s, table=37, n_packets=0, n_bytes=0, priority=150,reg10=0x10/0x10 actions=resubmit(,38)
cookie=0x0, duration=1319.179s, table=37, n_packets=0, n_bytes=0, priority=0 actions=resubmit(,38)
cookie=0x0, duration=1319.179s, table=39, n_packets=0, n_bytes=0, priority=0 actions=load:0->NXM_NX_REG0[],load:0->NXM_NX_REG1[],load:0->NXM_NX_REG2[],load:0->NXM_NX_REG3[],load:0->NXM_NX_REG4[],load:0->NXM_NX_REG5[],load:0->NXM_NX_REG6[],load:0->NXM_NX_REG7[],load:0->NXM_NX_REG8[],load:0->NXM_NX_REG9[],resubmit(,40)
cookie=0x0, duration=1319.179s, table=64, n_packets=0, n_bytes=0, priority=0 actions=resubmit(,65)
# ovs2
$ ovs-ofctl dump-flows br-int
cookie=0x0, duration=905.110s, table=0, n_packets=0, n_bytes=0, priority=100,in_port="ovn-ovs1-0" actions=move:NXM_NX_TUN_ID[0..23]->OXM_OF_METADATA[0..23],move:NXM_NX_TUN_METADATA0[16..30]->NXM_NX_REG14[0..14],move:NXM_NX_TUN_METADATA0[0..15]->NXM_NX_REG15[0..15],resubmit(,38)
cookie=0x0, duration=905.110s, table=37, n_packets=0, n_bytes=0, priority=150,reg10=0x2/0x2 actions=resubmit(,38)
cookie=0x0, duration=905.110s, table=37, n_packets=0, n_bytes=0, priority=150,reg10=0x10/0x10 actions=resubmit(,38)
cookie=0x0, duration=905.110s, table=37, n_packets=0, n_bytes=0, priority=0 actions=resubmit(,38)
cookie=0x0, duration=905.110s, table=39, n_packets=0, n_bytes=0, priority=0 actions=load:0->NXM_NX_REG0[],load:0->NXM_NX_REG1[],load:0->NXM_NX_REG2[],load:0->NXM_NX_REG3[],load:0->NXM_NX_REG4[],load:0->NXM_NX_REG5[],load:0->NXM_NX_REG6[],load:0->NXM_NX_REG7[],load:0->NXM_NX_REG8[],load:0->NXM_NX_REG9[],resubmit(,40)
cookie=0x0, duration=905.110s, table=64, n_packets=0, n_bytes=0, priority=0 actions=resubmit(,65)
根据br-int
的流表,我们知道无法 ping 通是正常的,因为流表项中并没有对00:00:00:00:00:01
或00:00:00:00:00:02
的处理逻辑。那这个时候我们有两种选择,一是分别登录到 ovs1 和 ovs2,然后通过ovs-ofctl
去直接操作br-int
,为它添加合适的流表项;二是使用 OVN 提供的能力,我们直接通过ovn-nbctl
来创建 Logic Switch,然后 OVN 将我们的逻辑网络转化为实际的流表项,下发到ovs1
和ovs2
的br-int
中,就我们本篇文章的目的,我们采用第二种思路。
第一步,我们首先在ovs1
上添加 Logic Switch ls1
:
# 创建 Logic Switch ls1
ovn-nbctl ls-add ls1
# 为 Logic Switch 添加端口 ls1-ovs1-ns1,该端口的 MAC 地址设备为 00:00:00:00:00:01,与 ovs1 上的 veth0 设备保持一致
$ ovn-nbctl lsp-add ls1 ls1-ovs1-ns1
$ ovn-nbctl lsp-set-addresses ls1-ovs1-ns1 00:00:00:00:00:01
$ ovn-nbctl lsp-set-port-security ls1-ovs1-ns1 00:00:00:00:00:01
# 为 Logic Switch 添加端口 ls1-ovs2-ns1,该端口的 MAC 地址设备为 00:00:00:00:00:02,与 ovs2 上的 veth0 设备保持一致
$ ovn-nbctl lsp-add ls1 ls1-ovs2-ns1
$ ovn-nbctl lsp-set-addresses ls1-ovs2-ns1 00:00:00:00:00:02
$ ovn-nbctl lsp-set-port-security ls1-ovs2-ns1 00:00:00:00:00:02
然后分别登录到ovs1
和ovs2
,将逻辑端口与物理端口绑定:
# ovs1
$ ovs-vsctl set interface veth0_br external-ids:iface-id=ls1-ovs1-ns1
$ tail -200f /var/log/ovn/ovn-controller.log
2023-11-09T09:14:09.069Z|00021|binding|INFO|Claiming lport ls1-ovs1-ns1 for this chassis.
2023-11-09T09:14:09.069Z|00022|binding|INFO|ls1-ovs1-ns1: Claiming 00:00:00:00:00:01
2023-11-09T09:14:09.128Z|00023|binding|INFO|Setting lport ls1-ovs1-ns1 ovn-installed in OVS
2023-11-09T09:14:09.128Z|00024|binding|INFO|Setting lport ls1-ovs1-ns1 up in Southbound
# ovs2
$ ovs-vsctl set interface veth0_br external-ids:iface-id=ls1-ovs2-ns1
$ tail -200f /var/log/ovn/ovn-controller.log
2023-11-09T09:15:36.638Z|00021|binding|INFO|Claiming lport ls1-ovs2-ns1 for this chassis.
2023-11-09T09:15:36.638Z|00022|binding|INFO|ls1-ovs2-ns1: Claiming 00:00:00:00:00:02
2023-11-09T09:15:36.696Z|00023|binding|INFO|Setting lport ls1-ovs2-ns1 ovn-installed in OVS
2023-11-09T09:15:36.696Z|00024|binding|INFO|Setting lport ls1-ovs2-ns1 up in Southbound
这里我们稍微解释一下如上的行为:
- 第一步,我们通过
ovn-nbctl
创建了 Logic Switchls1
,同时也创建了逻辑端口ls1-ovs1-ns1
和ls1-ovs2-ns1
,如果光从逻辑网络的角度来说,ls1-ovs1-ns1
和ls1-ovs2-ns1
天然是互通的,因为他们在同一交换机上。这也是我们的目标网络期望,我们希望ovs1
的veth0
与ovs2
的veth0
互通; - 第二步,我们声明了插在
br-int
上的veth0_br
物理端口(这里叫物理端口并不是因为veth0_br
是物理网卡,但它在内核中确实真实
存在的,这是有别于第一步创建的逻辑端口)与逻辑端口的绑定关系;
经过这两步后,对于 OVN 而言,它就已经清楚我们要做的事情是将ls1
上的ls1-ovs1-ns1
和ls1-ovs2-ns1
两个逻辑端口打通,并且也清楚这两个逻辑端口关联的物理端口在哪个chassis
上,这样它就有足够的信息去创建流表,并下发到对应的br-int
;
这时候我们再来观察ovs1
上的流表,可以看到已经增加了很多的流表项,并且其中有对00:00:00:00:00:01
的处理(本文删除了很多无关的流表项):
$ ovs-ofctl dump-flows br-int
cookie=0xfb09aa0d, duration=124.890s, table=8, n_packets=1, n_bytes=70, priority=50,reg14=0x1,metadata=0x1,dl_src=00:00:00:00:00:01 actions=resubmit(,9)
cookie=0x3bf4a8e8, duration=124.889s, table=10, n_packets=0, n_bytes=0, priority=90,arp,reg14=0x1,metadata=0x1,dl_src=00:00:00:00:00:01,arp_sha=00:00:00:00:00:01 actions=resubmit(,11)
cookie=0xad934169, duration=124.889s, table=10, n_packets=0, n_bytes=0, priority=90,icmp6,reg14=0x1,metadata=0x1,dl_src=00:00:00:00:00:01,nw_ttl=255,icmp_type=136,icmp_code=0,nd_tll=00:00:00:00:00:01 actions=resubmit(,11)
cookie=0xad934169, duration=124.889s, table=10, n_packets=0, n_bytes=0, priority=90,icmp6,reg14=0x1,metadata=0x1,dl_src=00:00:00:00:00:01,nw_ttl=255,icmp_type=136,icmp_code=0,nd_tll=00:00:00:00:00:00 actions=resubmit(,11)
cookie=0xad934169, duration=124.889s, table=10, n_packets=0, n_bytes=0, priority=90,icmp6,reg14=0x1,metadata=0x1,dl_src=00:00:00:00:00:01,nw_ttl=255,icmp_type=135,icmp_code=0,nd_sll=00:00:00:00:00:00 actions=resubmit(,11)
cookie=0xad934169, duration=124.889s, table=10, n_packets=0, n_bytes=0, priority=90,icmp6,reg14=0x1,metadata=0x1,dl_src=00:00:00:00:00:01,nw_ttl=255,icmp_type=135,icmp_code=0,nd_sll=00:00:00:00:00:01 actions=resubmit(,11)
cookie=0x5fd1762a, duration=124.889s, table=32, n_packets=0, n_bytes=0, priority=50,metadata=0x1,dl_dst=00:00:00:00:00:01 actions=load:0x1->NXM_NX_REG15[],resubmit(,37)
cookie=0xd305c89f, duration=124.889s, table=49, n_packets=0, n_bytes=0, priority=50,reg15=0x1,metadata=0x1,dl_dst=00:00:00:00:00:01 actions=resubmit(,64)
cookie=0x9744e616, duration=124.890s, table=65, n_packets=0, n_bytes=0, priority=100,reg15=0x1,metadata=0x1 actions=output:"veth0_br"
再执行一下 ping,可以看到网络已经正常互通:
$ ip netns exec ns1 ping -c1 10.1.1.2
PING 10.1.1.2 (10.1.1.2) 56(84) bytes of data.
64 bytes from 10.1.1.2: icmp_seq=1 ttl=64 time=2.34 ms
--- 10.1.1.2 ping statistics ---
1 packets mitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.340/2.340/2.340/0.000 m
我们来尝试 trace 看一下我们的数据包是怎么流通的,这里的 trace 也分为两个层面,逻辑层面和物理层面,我们先看逻辑层面,通过ovn-trace
可以看到:
$ ovn-trace --detailed ls1 'inport == "ls1-ovs1-ns1" && eth.src == 00:00:00:00:00:01 && eth.dst == 00:00:00:00:00:02'
# reg14=0x1,vlan_tci=0x0000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,dl_type=0x0000
ingress(dp="ls1", inport="ls1-ovs1-ns1")
----------------------------------------
0. ls_in_port_sec_l2 (northd.c:5652): inport == "ls1-ovs1-ns1" && eth.src == {00:00:00:00:00:01}, priority 50, uuid fb09aa0d
next;
24. ls_in_l2_lkup (northd.c:8626): eth.dst == 00:00:00:00:00:02, priority 50, uuid 6fbf2824
outport = "ls1-ovs2-ns1";
output;
egress(dp="ls1", inport="ls1-ovs1-ns1", outport="ls1-ovs2-ns1")
---------------------------------------------------------------
9. ls_out_port_sec_l2 (northd.c:5749): outport == "ls1-ovs2-ns1" && eth.dst == {00:00:00:00:00:02}, priority 50, uuid b47a0dad
output;
/* output to "ls1-ovs2-ns1", type "" */
逻辑层面的流表非常简单,流量就是从ls1-ovs1-ns1
进来,从ls1-ovs2-ns1
出去。我们再 trace 看一下实际的 OVS 交换机的流表项:
root@ovs1:~# ovs-appctl ofproto/trace br-int in_port=veth0_br,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02 -generate
Flow: in_port=2,vlan_tci=0x0000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,dl_type=0x0000
bridge("br-int")
----------------
0. in_port=2, priority 100, cookie 0x9744e616
set_field:0x2->reg13
set_field:0x1->reg11
set_field:0x3->reg12
set_field:0x1->metadata
set_field:0x1->reg14
resubmit(,8)
8. reg14=0x1,metadata=0x1,dl_src=00:00:00:00:00:01, priority 50, cookie 0xfb09aa0d
resubmit(,9)
9. metadata=0x1, priority 0, cookie 0xe1f6688a
resubmit(,10)
10. metadata=0x1, priority 0, cookie 0x206647c1
resubmit(,11)
11. metadata=0x1, priority 0, cookie 0xd9c15b2f
resubmit(,12)
12. metadata=0x1, priority 0, cookie 0x16271336
resubmit(,13)
13. metadata=0x1, priority 0, cookie 0x6755a0af
resubmit(,14)
14. metadata=0x1, priority 0, cookie 0xf93be0b2
resubmit(,15)
15. metadata=0x1, priority 0, cookie 0xe1c12540
resubmit(,16)
16. metadata=0x1, priority 65535, cookie 0x893f7d6
resubmit(,17)
17. metadata=0x1, priority 65535, cookie 0x3348210c
resubmit(,18)
18. metadata=0x1, priority 0, cookie 0xcc0ba6b
resubmit(,19)
19. metadata=0x1, priority 0, cookie 0x24ff1f92
resubmit(,20)
20. metadata=0x1, priority 0, cookie 0xbcbe5df
resubmit(,21)
21. metadata=0x1, priority 0, cookie 0xa1e819cc
resubmit(,22)
22. metadata=0x1, priority 0, cookie 0xde6b38e7
resubmit(,23)
23. metadata=0x1, priority 0, cookie 0xc2515403
resubmit(,24)
24. metadata=0x1, priority 0, cookie 0x774a7f92
resubmit(,25)
25. metadata=0x1, priority 0, cookie 0x2d51d29e
resubmit(,26)
26. metadata=0x1, priority 0, cookie 0xfb6ad009
resubmit(,27)
27. metadata=0x1, priority 0, cookie 0x15e0df4b
resubmit(,28)
28. metadata=0x1, priority 0, cookie 0xa714633b
resubmit(,29)
29. metadata=0x1, priority 0, cookie 0x24266311
resubmit(,30)
30. metadata=0x1, priority 0, cookie 0x82ba2720
resubmit(,31)
31. metadata=0x1, priority 0, cookie 0x939bced7
resubmit(,32)
32. metadata=0x1,dl_dst=00:00:00:00:00:02, priority 50, cookie 0x6fbf2824
set_field:0x2->reg15
resubmit(,37)
37. reg15=0x2,metadata=0x1, priority 100, cookie 0xf1bcaf3a
set_field:0x1/0xffffff->tun_id
set_field:0x2->tun_metadata0
move:NXM_NX_REG14[0..14]->NXM_NX_TUN_METADATA0[16..30]
-> NXM_NX_TUN_METADATA0[16..30] is now 0x1
output:1
-> output to kernel tunnel
Final flow: reg11=0x1,reg12=0x3,reg13=0x2,reg14=0x1,reg15=0x2,tun_id=0x1,metadata=0x1,in_port=2,vlan_tci=0x0000,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,dl_type=0x0000
Megaflow: recirc_id=0,eth,in_port=2,dl_src=00:00:00:00:00:01,dl_dst=00:00:00:00:00:02,dl_type=0x0000
Datapath actions: set(tunnel(tun_id=0x1,dst=192.168.31.47,ttl=64,tp_dst=6081,geneve({class=0x102,type=0x80,len=4,0x10002}),flags(df|csum|key))),2
可以看到对于物理层面而言,最终我们会output to kernel tunnel
,也就是会进入geneve
隧道网络。
为了验证我们的想法,我们抓包看下实际的数据包:
# ovs1 上执行 ping
root@ovs1:~# ip netns exec ns1 ping -c1 10.1.1.2
PING 10.1.1.2 (10.1.1.2) 56(84) bytes of data.
64 bytes from 10.1.1.2: icmp_seq=1 ttl=64 time=2.34 ms
--- 10.1.1.2 ping statistics ---
1 packets mitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.340/2.340/2.340/0.000 m
# ovs2 上抓取 enp1s0 网卡的包,可以看到 Geneve 封装后的数据包
¥ tcpdump -n -vvv -i enp1s0 port 6081
tcpdump: listening on enp1s0, link-type EN10MB (Ethernet), snapshot length 262144 bytes
17:23:02.178390 IP (tos 0x0, ttl 64, id 45826, offset 0, flags [DF], proto UDP (17), length 142)
192.168.31.154.17461 > 192.168.31.47.6081: [bad udp cksum 0xc0a5 -> 0xf147!] Geneve, Flags [C], vni 0x1, options [class Open Virtual Networking (OVN) (0x102) type 0x80(C) len 8 data 00010002]
IP (tos 0x0, ttl 64, id 61779, offset 0, flags [DF], proto ICMP (1), length 84)
10.1.1.1 > 10.1.1.2: ICMP echo request, id 22757, seq 1, length 64
17:23:02.179570 IP (tos 0x0, ttl 64, id 38874, offset 0, flags [DF], proto UDP (17), length 142)
192.168.31.47.9016 > 192.168.31.154.6081: [bad udp cksum 0xc0a5 -> 0x1245!] Geneve, Flags [C], vni 0x1, options [class Open Virtual Networking (OVN) (0x102) type 0x80(C) len 8 data 00020001]
IP (tos 0x0, ttl 64, id 3198, offset 0, flags [none], proto ICMP (1), length 84)
10.1.1.2 > 10.1.1.1: ICMP echo reply, id 22757, seq 1, length 64
# ovs2 上抓取 genev_sys_6081 网卡的包,可以看到 Geneve 解封装后的数据包
$ tcpdump -n -vvv -i genev_sys_6081
tcpdump: listening on genev_sys_6081, link-type EN10MB (Ethernet), snapshot length 262144 bytes
17:23:02.178439 IP (tos 0x0, ttl 64, id 61779, offset 0, flags [DF], proto ICMP (1), length 84)
10.1.1.1 > 10.1.1.2: ICMP echo request, id 22757, seq 1, length 64
17:23:02.179544 IP (tos 0x0, ttl 64, id 3198, offset 0, flags [none], proto ICMP (1), length 84)
10.1.1.2 > 10.1.1.1: ICMP echo reply, id 22757, seq 1, length 64
好,Login Switch 的部分到此结束,这个逻辑网络非常简单,但是我们从中可以理解 OVN 最重要的事情,就是将我们声明的逻辑网络,转换为最终的物理网络的流表。
Logic Router
刚才我们尝试创建了 Logic Switch ,这次我们尝试通过创建 Logic Router 来打通三层网络,最终的逻辑网络结构如下:
跟 Logic Switch 一样,我们还是先创建物理网络部分,对ovs1
:
$ ip netns add ns1
$ ip link add veth0 type veth peer name veth0_br
$ ip link set veth0 netns ns1
$ ip netns exec ns1 ip link set veth0 address 00:00:00:00:01:01
$ ip netns exec ns1 ip addr add 10.0.1.1/24 dev veth0
$ ip netns exec ns1 ip link set veth0 up
$ ip link set veth0_br up
$ ovs-vsctl add-port br-int veth0_br
$ ip netns add ns2
$ ip link add veth1 type veth peer name veth1_br
$ ip link set veth1 netns ns2
$ ip netns exec ns2 ip link set veth1 address 00:00:00:00:03:01
$ ip netns exec ns2 ip addr add 10.0.3.1/24 dev veth1
$ ip netns exec ns2 ip link set veth1 up
$ ip link set veth1_br up
$ ovs-vsctl add-port br-int veth1_br
$ ovs-vsctl show
7629ddb1-4771-495b-8ab6-1432bd9913bd
Bridge br-int
fail_mode: secure
datapath_type: system
Port ovn-ovs2-0
Interface ovn-ovs2-0
type: geneve
options: {csum="true", key=flow, remote_ip="192.168.31.47"}
Port br-int
Interface br-int
type: internal
Port veth0_br
Interface veth0_br
Port veth1_br
Interface veth1_br
ovs_version: "2.17.7"
对ovs2
:
$ ip netns add ns1
$ ip link add veth0 type veth peer name veth0_br
$ ip link set veth0 netns ns1
$ ip netns exec ns1 ip link set veth0 address 00:00:00:00:01:02
$ ip netns exec ns1 ip addr add 10.0.1.2/24 dev veth0
$ ip netns exec ns1 ip link set veth0 up
$ ip link set veth0_br up
$ ovs-vsctl add-port br-int veth0_br
$ ip netns add ns2
$ ip link add veth1 type veth peer name veth1_br
$ ip link set veth1 netns ns2
$ ip netns exec ns2 ip link set veth1 address 00:00:00:00:02:01
$ ip netns exec ns2 ip addr add 10.0.2.1/24 dev veth1
$ ip netns exec ns2 ip link set veth1 up
$ ip link set veth1_br up
$ ovs-vsctl add-port br-int veth1_br
$ ip netns add ns3
$ ip link add veth2 type veth peer name veth2_br
$ ip link set veth2 netns ns3
$ ip netns exec ns3 ip link set veth2 address 00:00:00:00:03:02
$ ip netns exec ns3 ip addr add 10.0.3.2/24 dev veth2
$ ip netns exec ns3 ip link set veth2 up
$ ip link set veth2_br up
$ ovs-vsctl add-port br-int veth2_br
$ ovs-vsctl show
43452548-e283-4fd4-836c-0fcba8f4e543
Bridge br-int
fail_mode: secure
datapath_type: system
Port ovn-ovs1-0
Interface ovn-ovs1-0
type: geneve
options: {csum="true", key=flow, remote_ip="192.168.31.154"}
Port veth2_br
Interface veth2_br
Port veth1_br
Interface veth1_br
Port br-int
Interface br-int
type: internal
Port veth0_br
Interface veth0_br
ovs_version: "2.17.7"
物理网络创建完毕,我们开始创建 Logic Switch:
$ ovn-nbctl ls-add ls1
$ ovn-nbctl lsp-add ls1 ls1-ovs1-ns1
$ ovn-nbctl lsp-set-addresses ls1-ovs1-ns1 00:00:00:00:01:01
$ ovn-nbctl lsp-set-port-security ls1-ovs1-ns1 00:00:00:00:01:01
$ ovn-nbctl lsp-add ls1 ls1-ovs2-ns1
$ ovn-nbctl lsp-set-addresses ls1-ovs2-ns1 00:00:00:00:01:02
$ ovn-nbctl lsp-set-port-security ls1-ovs2-ns1 00:00:00:00:01:02
$ ovn-nbctl ls-add ls2
$ ovn-nbctl lsp-add ls2 ls2-ovs2-ns2
$ ovn-nbctl lsp-set-addresses ls2-ovs2-ns2 00:00:00:00:02:01
$ ovn-nbctl lsp-set-port-security ls2-ovs2-ns2 00:00:00:00:02:01
$ ovn-nbctl ls-add ls3
$ ovn-nbctl lsp-add ls3 ls3-ovs1-ns2
$ ovn-nbctl lsp-set-addresses ls3-ovs1-ns2 00:00:00:00:03:01
$ ovn-nbctl lsp-set-port-security ls3-ovs1-ns2 00:00:00:00:03:01
$ ovn-nbctl lsp-add ls3 ls3-ovs2-ns3
$ ovn-nbctl lsp-set-addresses ls3-ovs2-ns3 00:00:00:00:03:02
$ ovn-nbctl lsp-set-port-security ls3-ovs2-ns3 00:00:00:00:03:02
将逻辑端口与物理端口进行绑定:
# ovs1
$ ovs-vsctl set interface veth0_br external-ids:iface-id=ls1-ovs1-ns1
$ ovs-vsctl set interface veth1_br external-ids:iface-id=ls3-ovs1-ns2
# ovs2
$ ovs-vsctl set interface veth0_br external-ids:iface-id=ls1-ovs2-ns1
$ ovs-vsctl set interface veth1_br external-ids:iface-id=ls2-ovs2-ns2
$ ovs-vsctl set interface veth2_br external-ids:iface-id=ls3-ovs2-ns3
如上的逻辑与之前 Logic Switch 的实验并没有差别,此时,在同一 Logic Switch 下的网络已经正常能通:
# ovs1
$ ip netns exec ns1 ping -c 1 10.0.1.2
PING 10.0.1.2 (10.0.1.2) 56(84) bytes of data.
64 bytes from 10.0.1.2: icmp_seq=1 ttl=64 time=1.80 ms
--- 10.0.1.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.803/1.803/1.803/0.000 ms
# ovs1
$ ip netns exec ns2 ping -c 1 10.0.3.2
PING 10.0.3.2 (10.0.3.2) 56(84) bytes of data.
64 bytes from 10.0.3.2: icmp_seq=1 ttl=64 time=1.55 ms
--- 10.0.3.2 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.553/1.553/1.553/0.000 ms
但这时候我们对网路提出更高的要求,我们希望10.0.1.0/24
网段到10.0.2.0/24
网段间也能互通,这时候就需要创建 Logic Router lr1
,将ls1
和ls2
连接起来,在三层打通:
# 创建 Logic Router,并声明路由器上用于连接交换机 ls1 和 ls2 的端口
$ ovn-nbctl lr-add lr1
$ ovn-nbctl lrp-add lr1 lr1-ls1 00:00:00:00:01:00 10.0.1.254/24
$ ovn-nbctl lrp-add lr1 lr1-ls2 00:00:00:00:02:00 10.0.2.254/24
# 在交换机 ls1 和 ls2 上创建用于连接到路由器的端口
$ ovn-nbctl lsp-add ls1 ls1-lr1
$ ovn-nbctl lsp-set-type ls1-lr1 router
$ ovn-nbctl lsp-set-addresses ls1-lr1 00:00:00:00:01:00
$ ovn-nbctl lsp-set-options ls1-lr1 router-port=lr1-ls1
$ ovn-nbctl lsp-add ls2 ls2-lr1
$ ovn-nbctl lsp-set-type ls2-lr1 router
$ ovn-nbctl lsp-set-addresses ls2-lr1 00:00:00:00:02:00
$ ovn-nbctl lsp-set-options ls2-lr1 router-port=lr1-ls2
# 由于本次实验涉及三层网络,所以需要为所有逻辑交换机的端口绑定 IP
$ ovn-nbctl lsp-set-addresses ls1-lr1 "00:00:00:00:01:00 10.0.1.254"
$ ovn-nbctl lsp-set-addresses ls1-ovs1-ns1 "00:00:00:00:01:01 10.0.1.1"
$ ovn-nbctl lsp-set-addresses ls1-ovs2-ns1 "00:00:00:00:01:02 10.0.1.2"
$ ovn-nbctl lsp-set-addresses ls2-lr1 "00:00:00:00:02:00 10.0.2.254"
$ ovn-nbctl lsp-set-addresses ls2-ovs2-ns2 "00:00:00:00:02:01 10.0.2.1"
$ ovn-nbctl show
switch e8dd7d1c-1a76-4232-a511-daf404eea3e3 (ls2)
port ls2-lr1
type: router
addresses: ["00:00:00:00:02:00 10.0.2.254"]
router-port: lr1-ls2
port ls2-ovs2-ns2
addresses: ["00:00:00:00:02:01 10.0.2.1"]
switch fb8916b4-8676-47a4-89c4-12620056dc4f (ls1)
port ls1-lr1
type: router
addresses: ["00:00:00:00:01:00 10.0.1.254"]
router-port: lr1-ls1
port ls1-ovs2-ns1
addresses: ["00:00:00:00:01:02 10.0.1.2"]
port ls1-ovs1-ns1
addresses: ["00:00:00:00:01:01 10.0.1.1"]
switch 5273a84f-2398-4b27-8a1a-06e476de9619 (ls3)
port ls3-ovs2-ns3
addresses: ["00:00:00:00:03:02"]
port ls3-ovs1-ns2
addresses: ["00:00:00:00:03:01"]
router 0f68975a-5e4b-4229-973c-7fdae9db22c7 (lr1)
port lr1-ls1
mac: "00:00:00:00:01:00"
networks: ["10.0.1.254/24"]
port lr1-ls2
mac: "00:00:00:00:02:00"
networks: ["10.0.2.254/24"]
其实到此为止,通过创建 Logic Router lr1
,我们已经将ls1
和ls2
打通了,但是此时尝试跨网段 ping 是无法 ping 通的,原因是物理网络的路由缺失,我们需要添加跨网段的路由:
$ ip netns exec ns1 ping -c 1 10.0.2.1
ping: connect: Network is unreachable
# ovs1
$ ip netns exec ns1 ip route add 10.0.2.0/24 via 10.0.1.254 dev veth0
$ ip netns exec ns1 route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.0.1.0 0.0.0.0 255.255.255.0 U 0 0 0 veth0
10.0.2.0 10.0.1.254 255.255.255.0 UG 0 0 0 veth0
# ovs2
$ ip netns exec ns2 ip route add 10.0.1.0/24 via 10.0.2.254 dev veth1
$ ip netns exec ns2 route -n
Kernel IP routing table
Destination Gateway Genmask Flags Metric Ref Use Iface
10.0.1.0 10.0.2.254 255.255.255.0 UG 0 0 0 veth1
10.0.2.0 0.0.0.0 255.255.255.0 U 0 0 0 veth1
此时再 ping,就发现跨网段的网络已经正常能通:
$ ip netns exec ns1 ping -c 1 10.0.2.1
PING 10.0.2.1 (10.0.2.1) 56(84) bytes of data.
64 bytes from 10.0.2.1: icmp_seq=1 ttl=63 time=2.46 ms
--- 10.0.2.1 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 2.460/2.460/2.460/0.000 ms
通过ovn-trace
,查看逻辑流表信息,重点关注 ingress 和 egress 的行,可以看到进入ls1
的数据包是经过 Logic Router lr1
的中转,最终投递到ls2
上的:
ovn-trace --summary ls1 'inport == "ls1-ovs1-ns1" && eth.src == 00:00:00:00:01:01 && ip4.src == 10.0.1.1 && eth.dst == 00:00:00:00:01:00 && ip4.dst == 10.0.2.1 && ip.ttl == 64 && icmp4.type == 8'
# icmp,reg14=0x1,vlan_tci=0x0000,dl_src=00:00:00:00:01:01,dl_dst=00:00:00:00:01:00,nw_src=10.0.1.1,nw_dst=10.0.2.1,nw_tos=0,nw_ecn=0,nw_ttl=64,nw_frag=no,icmp_type=8,icmp_code=0
ingress(dp="ls1", inport="ls1-ovs1-ns1") {
next;
outport = "ls1-lr1";
output;
egress(dp="ls1", inport="ls1-ovs1-ns1", outport="ls1-lr1") {
next;
output;
/* output to "ls1-lr1", type "patch" */;
ingress(dp="lr1", inport="lr1-ls1") {
xreg0[0..47] = 00:00:00:00:01:00;
next;
reg9[2] = 1;
next;
next;
reg7 = 0;
next;
ip.ttl--;
reg8[0..15] = 0;
reg0 = ip4.dst;
reg1 = 10.0.2.254;
eth.src = 00:00:00:00:02:00;
outport = "lr1-ls2";
flags.loopback = 1;
next;
next;
reg8[0..15] = 0;
next;
next;
eth.dst = 00:00:00:00:02:01;
next;
output;
egress(dp="lr1", inport="lr1-ls1", outport="lr1-ls2") {
reg9[4] = 0;
next;
output;
/* output to "lr1-ls2", type "patch" */;
ingress(dp="ls2", inport="ls2-lr1") {
next;
next;
outport = "ls2-ovs2-ns2";
output;
egress(dp="ls2", inport="ls2-lr1", outport="ls2-ovs2-ns2") {
output;
/* output to "ls2-ovs2-ns2", type "" */;
};
};
};
};
};
};