本文涉及知识点
C++图论
LeetCode1584. 连接所有点的最小费用
给你一个points 数组,表示 2D 平面上的一些点,其中 points[i] = [xi, yi] 。
连接点 [xi, yi] 和点 [xj, yj] 的费用为它们之间的 曼哈顿距离 :|xi - xj| + |yi - yj| ,其中 |val| 表示 val 的绝对值。
请你返回将所有点连接的最小总费用。只有任意两点之间 有且仅有 一条简单路径时,才认为所有点都已连接。
示例 1:
输入:points = [[0,0],[2,2],[3,10],[5,2],[7,0]]
输出:20
解释:
我们可以按照上图所示连接所有点得到最小总费用,总费用为 20 。
注意到任意两个点之间只有唯一一条路径互相到达。
示例 2:
输入:points = [[3,12],[-2,5],[-4,1]]
输出:18
示例 3:
输入:points = [[0,0],[1,1],[1,0],[-1,1]]
输出:4
示例 4:
输入:points = [[-1000000,-1000000],[1000000,1000000]]
输出:4000000
示例 5:
输入:points = [[0,0]]
输出:0
提示:
1 <= points.length <= 1000
-106 <= xi, yi <= 106
所有点 (xi, yi) 两两不同。
代码
核心代码
class CNearestMST
{
public:
CNearestMST(const int iNodeSize) :m_bDo(iNodeSize), m_vDis(iNodeSize, INT_MAX), m_vNeiTable(iNodeSize)
{
}
void Init(const vector<vector<int>>& edges)
{
for (const auto& v : edges)
{
Add(v);
}
}
void Add(const vector<int>& v)
{
m_vNeiTable[v[0]].emplace_back(v[1], v[2]);
m_vNeiTable[v[1]].emplace_back(v[0], v[2]);
}
int MST(int start)
{
int next = start;
while ((next = AddNode(next)) >= 0);
return m_iMST;
}
int MST(int iNode1, int iNode2, int iWeight)
{
m_bDo[iNode1] = true;
for (const auto& it : m_vNeiTable[iNode1])
{
if (m_bDo[it.first])
{
continue;
}
m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
}
m_iMST = iWeight;
int next = iNode2;
while ((next = AddNode(next)) >= 0);
return m_iMST;
}
private:
int AddNode(int iCur)
{
m_bDo[iCur] = true;
for (const auto& it : m_vNeiTable[iCur])
{
if (m_bDo[it.first])
{
continue;
}
m_vDis[it.first] = min(m_vDis[it.first], (long long)it.second);
}
int iMinIndex = -1;
for (int i = 0; i < m_vDis.size(); i++)
{
if (m_bDo[i])
{
continue;
}
if ((-1 == iMinIndex) || (m_vDis[i] < m_vDis[iMinIndex]))
{
iMinIndex = i;
}
}
if (-1 != iMinIndex)
{
if (INT_MAX == m_vDis[iMinIndex])
{
m_iMST = -1;
return -1;
}
m_iMST += m_vDis[iMinIndex];
}
return iMinIndex;
}
vector<bool> m_bDo;
vector<long long> m_vDis;
vector < vector<std::pair<int, int>>> m_vNeiTable;
long long m_iMST = 0;
};
class Solution {
public:
int minCostConnectPoints(vector<vector<int>>& points) {
const int N = points.size();
CNearestMST mst(N);
for (int i = 0; i < N; i++) {
for (int j = i + 1; j < N; j++) {
const int iDis = abs(points[i][0] - points[j][0])+ abs(points[i][1] - points[j][1]);
mst.Add({i,j,iDis });
}
}
return mst.MST(0);
}
};
代码
vector<vector<int>> points;
TEST_METHOD(TestMethod11)
{
points = { {0,0},{2,2},{3,10},{5,2},{7,0} };
auto res = Solution().minCostConnectPoints(points);
AssertEx(20, res);
}
TEST_METHOD(TestMethod12)
{
points = { {3,12},{-2,5},{-4,1} };
auto res = Solution().minCostConnectPoints(points);
AssertEx(18, res);
}
TEST_METHOD(TestMethod13)
{
points = { {0,0},{1,1},{1,0},{-1,1} };
auto res = Solution().minCostConnectPoints(points);
AssertEx(4, res);
}
TEST_METHOD(TestMethod14)
{
points = { {-1000000,-1000000},{1000000,1000000} };
auto res = Solution().minCostConnectPoints(points);
AssertEx(4000000, res);
}
TEST_METHOD(TestMethod15)
{
points = { {0,0}};
auto res = Solution().minCostConnectPoints(points);
AssertEx(0, res);
}