import time
import torchvision
import torch
from torch.utils.tensorboard import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
class Test(nn.Module):
def __init__(self):
super(Test, self).__init__()
self.model=nn.Sequential(
nn.Conv2d(3,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,32,5,1,2),
nn.MaxPool2d(2),
nn.Conv2d(32,64,5,1,2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(64*4*4,64),
nn.Linear(64,10)
)
def forward(self,x):
x=self.model(x)
return x
if __name__ == '__main__':
train_data=torchvision.datasets.CIFAR10(root="./data",train=True,transform=torchvision.transforms.ToTensor(),
download=True)
test_data=torchvision.datasets.CIFAR10(root="./data",train=False,transform=torchvision.transforms.ToTensor(),
download=True)
train_data_size=len(train_data)
test_data_size=len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
train_dataloader=DataLoader(train_data,batch_size=64)
test_dataloader=DataLoader(test_data,batch_size=64)
test=Test()
test=test.cuda()
loss_fn=nn.CrossEntropyLoss()
loss_fn=loss_fn.cuda()
optimizer=torch.optim.SGD(test.parameters(),lr=0.01)
total_train_step=0
total_test_step=0
epoch=10
writer=SummaryWriter("./logs_train")
for i in range(epoch):
start=time.time()
print("**********第{}轮训练开始*********".format(i+1))
test.train()
for data in train_dataloader:
imgs,targets=data
imgs=imgs.cuda()
targets=targets.cuda()
outputs=test(imgs)
loss=loss_fn(outputs,targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step=total_train_step+1
if total_train_step%100==0:
end=time.time()
print("训练时间为:",end-start)
print("训练次数: {},loss:{}".format(total_train_step,loss.item()))
writer.add_scalar("train_loss",loss.item(),total_train_step)
test.eval()
total_test_loss=0
total_accuracy=0
with torch.no_grad():
for data in test_dataloader:
imgs,targets=data
imgs=imgs.cuda()
targets=targets.cuda()
outputs=test(imgs)
loss=loss_fn(outputs,targets)
total_test_loss=total_test_loss+loss.item()
accuracy=(outputs.argmax(1)==targets).sum()
total_accuracy=total_accuracy+accuracy
print("整体测试集上的Loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss",total_test_loss,total_test_step)
total_test_step=total_test_step+1
torch.save(test,"test_{}.pth".format(i))
print("模型已保存")
writer.close()
运行结果: