前提概要
Java体系中的所有类,必须以【class字节码文件】必须被装载到JVM中才能运行,这个装载工作是由JVM中的类装载器完成的,类装载器所做的工作实质是把class字节码文件从存储介质(网络、硬盘、数据库等多元化方式)读取到JVM内存中,JVM在加载类的时候,都是通过ClassLoader的loadClass()方法来加载class字节码的,Java的类加载器使用双亲委派模式进行加载类。
官方给出ClassLoader功能翻译为
ClassLoader类是一个抽象类
/**
* A class loader is an object that is responsible for loading classes. The
* class <tt>ClassLoader</tt> is an abstract class. Given the <a
* href="#name">binary name</a> of a class, a class loader should attempt to
* locate or generate data that constitutes a definition for the class. A
* typical strategy is to transform the name into a file name and then read a
* "class file" of that name from a file system.
**/
public abstract class ClassLoader
大致意思如下(个人补充了完整信息)
-
Classloader是一个负责加载classes的对象,ClassLoader类是一个抽象类,给定类的二进制名称(全限定名),尝试定位或者产生一个class的元数据信息(class静态常量池中的元数据)存放到方法区中的运行时常量池以及字符串常量池中。并且创建一个class实例对象指向该方法区内存的地址。
-
**我们常用的解析方式策略就是将名称转换为物理位置及文件名,然后定位到文件系统等相关媒介中,并且读取该名称的“class类文件”**。
前提概要
为了更好的理解类的加载机制,我们来深入研究一下ClassLoader和他的loadClass()方法。
ClassLoader分类
Java系统自带有三个类加载器
Bootstrap ClassLoader
最顶层的加载类,主要加载核心类库,%JRE_HOME%\lib下的rt.jar、resources.jar、charsets.jar等。
-
Java命令行提供了如何扩展bootStrap级别加载class的简单方法。
-
另外需要注意的是可以通过启动JVM时指定 -Xbootclasspath 和路径来改变Bootstrap ClassLoader的加载目录。
-
语法如下:
-
-Xbootclasspath: 完全取代基本核心的Java class 搜索路径,不常用,否则要重新写所有Java核心class。
-
-Xbootclasspath/a: 被指定的文件追加到默认的bootstrap路径中。
-
-Xbootclasspath/p: 前缀在核心class搜索路径前面。不常用,避免引起不必要的冲突。
-
-Dsun.boot.class.path=XXXX
-
分隔符与classpath参数类似,unix使用:号,windows使用;号,这里以unix为例
java -Xbootclasspath/a:/usrhome/thirdlib.jar: -jar yourJarExe.jar
Extention ClassLoader(扩展的类加载器)
加载目录%JRE_HOME%\lib\ext目录下的jar包和class文件。还可以加载-D java.ext.dirs选项指定的目录。
可以采用 java.ext.dirs
这个虚拟机参数选项进行设置。
Appclass Loader(系统型类加载器)
也称为SystemAppClass加载当前应用的classpath的所有类。
ClassLoader从继承关系
为了更好的理解,我们可以查看源码。看sun.misc.Launcher,它是一个java虚拟机的入口应用。
public class Launcher {
private static Launcher launcher = new Launcher();
private static String bootClassPath = System.getProperty("sun.boot.class.path");
public static Launcher getLauncher() {
return launcher;
}
private ClassLoader loader;
public Launcher() {
// Create the extension class loader
ClassLoader extcl;
try {
extcl = ExtClassLoader.getExtClassLoader();
} catch (IOException e) {
throw new InternalError( "Could not create extension class loader", e);
}
// Now create the class loader to use to launch the application
try {
loader = AppClassLoader.getAppClassLoader(extcl);
} catch (IOException e) {
throw new InternalError( "Could not create application class loader", e);
}
//设置AppClassLoader为线程上下文类加载器,这个文章后面部分讲解
Thread.currentThread().setContextClassLoader(loader);
}
/*
* Returns the class loader used to launch the main application.
*/
public ClassLoader getClassLoader() {
return loader;
}
/*
* The class loader used for loading installed extensions.
*/
static class ExtClassLoader extends URLClassLoader {}
/**
* The class loader used for loading from java.class.path.
* runs in a restricted security context.
*/
static class AppClassLoader extends URLClassLoader {}
源码有精简,我们可以得到相关的信息。
-
Launcher初始化了ExtClassLoader和AppClassLoader。
-
Launcher中并没有看见BootstrapClassLoader,但通过System.getProperty("sun.boot.class.path")得到了字符串bootClassPath,这个应该就是BootstrapClassLoader加载的jar包路径。
我们可以先代码测试一下sun.boot.class.path是什么内容。
System.out.println(System.getProperty("sun.boot.class.path"));
得到的结果是:
C:\Program Files\Java\jre1.8.0_91\lib\resources.jar;
C:\Program Files\Java\jre1.8.0_91\lib\rt.jar;
C:\Program Files\Java\jre1.8.0_91\lib\sunrsasign.jar;
C:\Program Files\Java\jre1.8.0_91\lib\jsse.jar;
C:\Program Files\Java\jre1.8.0_91\lib\jce.jar;
C:\Program Files\Java\jre1.8.0_91\lib\charsets.jar;
C:\Program Files\Java\jre1.8.0_91\lib\jfr.jar;
C:\Program Files\Java\jre1.8.0_91\classes
可以看到,这些全是JRE目录下的jar包或者是class文件。
ExtClassLoader源码
/*
* The class loader used for loading installed extensions.
*/
static class ExtClassLoader extends URLClassLoader {
static {
ClassLoader.registerAsParallelCapable();
}
/**
* create an ExtClassLoader. The ExtClassLoader is created
* within a context that limits which files it can read
*/
public static ExtClassLoader getExtClassLoader() throws IOException
{
final File[] dirs = getExtDirs();
try {
// Prior implementations of this doPrivileged() block supplied
// aa synthesized ACC via a call to the private method
// ExtClassLoader.getContext().
return AccessController.doPrivileged(
new PrivilegedExceptionAction<ExtClassLoader>() {
public ExtClassLoader run() throws IOException {
int len = dirs.length;
for (int i = 0; i < len; i++) {
MetaIndex.registerDirectory(dirs[i]);
}
return new ExtClassLoader(dirs);
}
});
} catch (java.security.PrivilegedActionException e) {
throw (IOException) e.getException();
}
}
private static File[] getExtDirs() {
String s = System.getProperty("java.ext.dirs");
File[] dirs;
if (s != null) {
StringTokenizer st =
new StringTokenizer(s, File.pathSeparator);
int count = st.countTokens();
dirs = new File[count];
for (int i = 0; i < count; i++) {
dirs[i] = new File(st.nextToken());
}
} else {
dirs = new File[0];
}
return dirs;
}
......
}
指定-D java.ext.dirs参数来添加和改变ExtClassLoader的加载路径。这里我们通过可以编写测试代码。
System.out.println(System.getProperty("java.ext.dirs"));
结果如下:
C:\Program Files\Java\jre1.8.0_91\lib\ext;C:\Windows\Sun\Java\lib\ext
AppClassLoader源码
/**
* The class loader used for loading from java.class.path.
* runs in a restricted security context.
*/
static class AppClassLoader extends URLClassLoader {
public static ClassLoader getAppClassLoader(final ClassLoader extcl)
throws IOException{
final String s = System.getProperty("java.class.path");
final File[] path = (s == null) ? new File[0] : getClassPath(s);
return AccessController.doPrivileged(
new PrivilegedAction<AppClassLoader>() {
public AppClassLoader run() {
URL[] urls =
(s == null) ? new URL[0] : pathToURLs(path);
return new AppClassLoader(urls, extcl);
}
});
}
......
}
可以看到AppClassLoader加载的就是 -Djava.class.path 下的路径。我们同样打印它的值。
System.out.println(System.getProperty("java.class.path"));
结果如下:
D:\workspace\ClassLoaderDemo\bin
这个路径其实就是当前java工程目录bin,里面存放的是编译生成的class文件。
自此我们已经知道了BootstrapClassLoader、ExtClassLoader、AppClassLoader实际是查阅相应的环境属性(-Xbootclasspath[/a/p]:)sun.boot.class.path、java.ext.dirs和java.class.path来加载资源文件的。
ClassLoader加载顺序
-
我们看到了系统的3种类加载器,但我们可能不知道具体哪个先行呢?这与我们的加载方式模型来决定的:上面说过Java使用的是双亲委托模型。
-
Java的类加载器查找class和resource时,是通过“委托模式”进行的,它首先判断这个class是不是已经加载成功,如果没有的话它并不是自己进行查找,而是先通过父加载器,然后递归下去,直到Bootstrap ClassLoader。
-
如果Bootstrap ClassLoader也没有加载过此class实例,那么它就会从它指定的路径中去查找,如果查找成功则返回,如果没有查找成功则交给子类加载器,也就是ExtClassLoader,这样类似操作直到终点,也就是我上图中的红色箭头示例。这种机制就叫做双亲委托。
-
什么是双亲委派机制?
整个流程可以如下图所示:
- 如果当前的类加载器没有查询到这个class对象已经加载就请求父加载器(不一定是父类)进行操作,然后以此类推。
具体流程描述
-
一个AppClassLoader查找资源时,先看看缓存是否有,缓存有从缓存中获取,否则委托给父加载器。
-
递归,重复第1部的操作。
-
如果ExtClassLoader也没有加载过,则由Bootstrap ClassLoader出面,它首先查找缓存,如果没有找到的话,就去找自己的规定的路径下,也就是sun.mic.boot.class下面的路径。找到就返回,没有找到,让子加载器自己去找。
-
Bootstrap ClassLoader如果没有查找成功,则ExtClassLoader自己在java.ext.dirs路径中去查找,查找成功就返回,查找不成功,再向下让子加载器找。
-
ExtClassLoader查找不成功,AppClassLoader就自己查找,在java.class.path路径下查找。找到就返回。如果没有找到就让子类找,如果没有子类会怎么样?抛出各种异常。
上面的序列,详细说明了双亲委托的加载流程。我们可以发现委托是从下向上,然后具体查找过程却是自上至下。
加载类过程
首先加载类是通过Classloader中的loadClass方法加载,Classloader部分代码:
loadClass
JDK文档中是这样写的,通过指定的全限定类名加载class,它通过同名的loadClass(String,boolean)方法。
protected Class<?> loadClass(String name, boolean resolve)
throws ClassNotFoundException {
synchronized (getClassLoadingLock(name)) {
// 首先,检测是否已经加载
Class<?> c = findLoadedClass(name);
if (c == null) {
long t0 = System.nanoTime();
try {
if (parent != null) {
//父加载器不为空则调用父加载器的loadClass
c = parent.loadClass(name, false);
} else {
//父加载器为空则调用Bootstrap Classloader
c = findBootstrapClassOrNull(name);
}
} catch (ClassNotFoundException e) {
// ClassNotFoundException thrown if class not found
// from the non-null parent class loader
}
if (c == null) {
// If still not found, then invoke findClass in order
// to find the class.
long t1 = System.nanoTime();
//父加载器没有找到,则调用findclass
c = findClass(name);
// this is the defining class loader; record the stats
sun.misc.PerfCounter.getParentDelegationTime().addTime(t1 - t0);
sun.misc.PerfCounter.getFindClassTime().addElapsedTimeFrom(t1);
sun.misc.PerfCounter.getFindClasses().increment();
}
}
if (resolve) {
//调用resolveClass()
resolveClass(c);
}
return c;
}
}
// 篡改双亲委托
@Override
protected Class<?> loadClass(String className, boolean resolve)
throws ClassNotFoundException {
Class<?> clazz = findLoadedClass(className);
if (clazz == null) {
clazz = findClass(className);
}
return clazz;
}
// 主要用于覆盖此方法去控制双亲委托下的加载实现
protected final Class<?> findLoadedClass(String name) {
ClassLoader loader;
if (this == BootClassLoader.getInstance())
loader = null;
else
loader = this;
return VMClassLoader.findLoadedClass(loader, name);
}
上面是方法原型,一般实现这个方法的步骤是:
-
**执行findLoadedClass(String)去检测这个class是不是已经加载过了,直接获取当前的类加载器(系统类加载器)**。
-
执行父加载器的loadClass方法。如果父加载器为null,则jvm内置的加载器去替代,也就是Bootstrap ClassLoader。这也解释了ExtClassLoader的parent为null,但仍然说Bootstrap ClassLoader是它的父加载器。
-
如果向上委托父加载器没有加载成功,则通过findClass(String)查找。
-
如果class在上面的步骤中找到了,参数resolve又是true的话,那么loadClass()又会调用resolveClass(Class)这个方法来生成最终的Class对象。 我们可以从源代码看出这个步骤。
另外,要注意的是如果要编写一个classLoader的子类,也就是自定义一个classloader,建议覆盖findClass()方法,而不要直接改写loadClass()方法。
if (parent != null) {
//父加载器不为空则调用父加载器的loadClass
c = parent.loadClass(name, false);
} else {
//父加载器为空则调用Bootstrap Classloader
c = findBootstrapClassOrNull(name);
}
- 前面说过ExtClassLoader的parent为null,所以它向上委托时,系统会为它指定Bootstrap ClassLoader。
synchronized (getClassLoadingLock(name)) 看到这行代码,我们能知道的是,这是一个同步代码块,那么synchronized的括号中放的应该是一个对象。我们来看getClassLoadingLock(name)方法的作用是什么:
protected Object getClassLoadingLock(String className) {
Object lock = this;
if (parallelLockMap != null) {
Object newLock = new Object();
lock = parallelLockMap.putIfAbsent(className, newLock);
if (lock == null) {
lock = newLock;
}
}
return lock;
}
-
以上是getClassLoadingLock(name)方法的实现细节,我们看到这里用到变量parallelLockMap ,根据这个变量的值进行不同的操作,如果这个变量是Null,那么直接返回this,如果这个属性不为Null,那么就新建一个对象,然后在调用一个putIfAbsent(className, newLock);
-
那么这个parallelLockMap变量又是哪来的那,我们发现这个变量是ClassLoader类的成员变量:
private final ConcurrentHashMap<String, Object> parallelLockMap;
这个变量的初始化工作在ClassLoader的构造函数中:
private ClassLoader(Void unused, ClassLoader parent) {
this.parent = parent;
if (ParallelLoaders.isRegistered(this.getClass())) {
parallelLockMap = new ConcurrentHashMap<>();
package2certs = new ConcurrentHashMap<>();
domains =
Collections.synchronizedSet(new HashSet<ProtectionDomain>());
assertionLock = new Object();
} else {
// no finer-grained lock; lock on the classloader instance
parallelLockMap = null;
package2certs = new Hashtable<>();
domains = new HashSet<>();
assertionLock = this;
}
}
这里我们可以看到构造函数根据一个属性ParallelLoaders的Registered状态的不同来给parallelLockMap 赋值。
在ClassLoader类中包含一个静态内部类private static class ParallelLoaders,在ClassLoader被加载的时候这个静态内部类就被初始化。这个静态内部类的代码我就不贴了,直接告诉大家什么意思,sun公司是这么说的:Encapsulates the set of parallel capable loader types,意识就是说:封装了并行的可装载的类型的集合。
上面这个说的是不是有点乱,那让我们来整理一下:
-
首先,在ClassLoader类中有一个静态内部类ParallelLoaders,他会指定的类的并行能力,如果当前的加载器被定位为具有并行能力,那么他就给parallelLockMap定义,就是new一个 ConcurrentHashMap<>(),那么这个时候,我们知道如果当前的加载器是具有并行能力的,那么parallelLockMap就不是Null,这个时候,我们判断parallelLockMap是不是Null,如果他是null,说明该加载器没有注册并行能力,那么我们没有必要给他一个加锁的对象,getClassLoadingLock方法直接返回this,就是当前的加载器的一个实例。
-
如果这个parallelLockMap不是null,那就说明该加载器是有并行能力的,那么就可能有并行情况,那就需要返回一个锁对象。然后就是创建一个新的Object对象,调用parallelLockMap的putIfAbsent(className, newLock)方法,这个方法的作用是:
-
根据传进来的className,检查该名字是否已经关联了一个value值,如果已经关联过value值,那么直接把他关联的值返回,如果没有关联过值的话,那就把我们传进来的Object对象作为value值,className作为Key值组成一个map返回。
-
无论putIfAbsent方法的返回值是什么,都把它赋值给我们刚刚生成的那个Object对象。 这个时候,我们来简单说明一下getClassLoadingLock(String className)的作用,就是: 为类的加载操作返回一个锁对象。
-
为了向后兼容,这个方法这样实现:如果当前的classloader对象注册了并行能力,方法返回一个与指定的名字className相关联的特定对象,否则,直接返回当前的ClassLoader对象。
双亲委派机制的作用
-
避免重复加载,当父类加载器已经加载了该类的时候,就没有必要子类加载器再加载一次了。
- 首先,类加载器是按照级别层层往下加载的,当下层的加载器去加载某一个类时,有可能上层的加载已经加载过的,比如FrameWork层的加载被BootClassLoader加载过,下层不用再去加载了。
-
安全性考虑,防止核心API库被随意篡改。
- 系统类加载器已经加载过了FrameWork层了类,如果我们自己再写一个系统级别的类,创建包java.lang,创建一个自己的String类,类加载器去加载这个类覆盖了原本的java.lang下的String,那么这个时候使用String整个应用就出问题了。
package java.lang;
class String {
@NonNull
@Override
public String toString() {
return "";
}
@Override
public boolean equals(@Nullable Object obj) {
return false;
}
}
而因为双亲委派机制,加载这个String类之前,调用parent的BootClassloader,判断已经加载过String类,这个类其实不会再去找了,解决了被篡改的问题。
类加载的动态性体现
一个应用程序总是由n多个类组成,Java程序启动时,并不是一次把所有的类全部加载后再运行,它总是先把保证程序运行的基础类一次性加载到jvm中,其它类等到jvm用到的时候再加载,这样的好处是节省了内存的开销,因为java最早就是为嵌入式系统而设计的,内存宝贵,这是一种可以理解的机制,而用到时再加载这也是java动态性的一种体现。
类的加载过程
-
装载:通过“类全路径名”查找并加载类的二进制数据,并且生成class实例对象指向对应的方法区的内存数据结构。
-
链接:**把类的二进制数据合并到JVM中(主要作为校验阶段中的class文件格式校验阶段完成存入方法区内存中)**。
-
验证:确保被加载类的正确性,确保加载内容不危害虚拟机;
-
准备:为类的静态变量分配内存,并将其初始化为默认值,常量直接赋值;
-
解析:把类中的符号引用转换为直接引用;
-
-
初始化:直接进行先关的静态类构造器,实现相关的相关的类属性和类代码块的执行和赋值操作。