模拟学生个人信息写入es数据库,包括姓名、性别、年龄、特点、科目、成绩,创建时间。
方案一:
在写入数据时未提前创建索引mapping,而是每插入一条数据都包含了索引的信息。
示例代码:【多线程写入数据】【一次性写入10000*1000条数据】 【本人亲测耗时3266秒】
from elasticsearch import Elasticsearch
from elasticsearch import helpers
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
'努力、积极、乐观、拼搏是我的人生信条',
'抗压能力强,能够快速适应周围环境',
'敢做敢拼,脚踏实地;做事认真负责,责任心强',
'爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
'主动性强,自学能力强,具有团队合作意识,有一定组织能力',
'忠实诚信,讲原则,说到做到,决不推卸责任',
'有自制力,做事情始终坚持有始有终,从不半途而废',
'肯学习,有问题不逃避,愿意虚心向他人学习',
'愿意以谦虚态度赞扬接纳优越者,权威者',
'会用100%的热情和精力投入到工作中;平易近人',
'为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
'有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
def save_to_es(num):
"""
批量写入数据到es数据库
:param num:
:return:
"""
start = time.time()
action = [
{
"_index": "personal_info_10000000",
"_type": "doc",
"_id": i,
"_source": {
"id": i,
"name": random.choice(names),
"sex": random.choice(sexs),
"age": random.choice(age),
"character": random.choice(character),
"subject": random.choice(subjects),
"grade": random.choice(grades),
"create_time": create_time
}
} for i in range(10000 * num, 10000 * num + 10000)
]
helpers.bulk(es, action)
end = time.time()
print(f"{num}耗时{end - start}s!")
def run():
global queue
while queue.qsize() > 0:
num = queue.get()
print(num)
save_to_es(num)
if __name__ == '__main__':
start = time.time()
queue = Queue()
# 序号数据进队列
for num in range(1000):
queue.put(num)
# 多线程执行程序
consumer_lst = []
for _ in range(10):
thread = threading.Thread(target=run)
thread.start()
consumer_lst.append(thread)
for consumer in consumer_lst:
consumer.join()
end = time.time()
print('程序执行完毕!花费时间:', end - start)
运行结果:
自动创建的索引mapping:
GET personal_info_10000000/_mapping
{
"personal_info_10000000" : {
"mappings" : {
"properties" : {
"age" : {
"type" : "long"
},
"character" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"create_time" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"grade" : {
"type" : "long"
},
"id" : {
"type" : "long"
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"sex" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
},
"subject" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
}
}
}
方案二:
1.顺序插入5000000条数据
先创建索引personal_info_5000000,确定好mapping后,再插入数据。
新建索引并设置mapping信息:
PUT personal_info_5000000
{
"settings": {
"number_of_shards": 3,
"number_of_replicas": 1
},
"mappings": {
"properties": {
"id": {
"type": "long"
},
"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 32
}
}
},
"sex": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 8
}
}
},
"age": {
"type": "long"
},
"character": {
"type": "text",
"analyzer": "ik_smart",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"subject": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"grade": {
"type": "long"
},
"create_time": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
}
}
}
}
查看新建索引信息:
GET personal_info_5000000
{
"personal_info_5000000" : {
"aliases" : { },
"mappings" : {
"properties" : {
"age" : {
"type" : "long"
},
"character" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
},
"analyzer" : "ik_smart"
},
"create_time" : {
"type" : "date",
"format" : "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
},
"grade" : {
"type" : "long"
},
"id" : {
"type" : "long"
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 32
}
}
},
"sex" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 8
}
}
},
"subject" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
},
"settings" : {
"index" : {
"routing" : {
"allocation" : {
"include" : {
"_tier_preference" : "data_content"
}
}
},
"number_of_shards" : "3",
"provided_name" : "personal_info_50000000",
"creation_date" : "1663471072176",
"number_of_replicas" : "1",
"uuid" : "5DfmfUhUTJeGk1k4XnN-lQ",
"version" : {
"created" : "7170699"
}
}
}
}
}
开始插入数据:
示例代码: 【单线程写入数据】【一次性写入10000*500条数据】 【本人亲测耗时7916秒】
from elasticsearch import Elasticsearch
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
'努力、积极、乐观、拼搏是我的人生信条',
'抗压能力强,能够快速适应周围环境',
'敢做敢拼,脚踏实地;做事认真负责,责任心强',
'爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
'主动性强,自学能力强,具有团队合作意识,有一定组织能力',
'忠实诚信,讲原则,说到做到,决不推卸责任',
'有自制力,做事情始终坚持有始有终,从不半途而废',
'肯学习,有问题不逃避,愿意虚心向他人学习',
'愿意以谦虚态度赞扬接纳优越者,权威者',
'会用100%的热情和精力投入到工作中;平易近人',
'为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
'有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# 添加程序耗时的功能
def timer(func):
def wrapper(*args, **kwargs):
start = time.time()
res = func(*args, **kwargs)
end = time.time()
print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start))
return res
return wrapper
@timer
def save_to_es(num):
"""
顺序写入数据到es数据库
:param num:
:return:
"""
body = {
"id": num,
"name": random.choice(names),
"sex": random.choice(sexs),
"age": random.choice(age),
"character": random.choice(character),
"subject": random.choice(subjects),
"grade": random.choice(grades),
"create_time": create_time
}
# 此时若索引不存在时会新建
es.index(index="personal_info_5000000", id=num, doc_type="_doc", document=body)
def run():
global queue
while queue.qsize() > 0:
num = queue.get()
print(num)
save_to_es(num)
if __name__ == '__main__':
start = time.time()
queue = Queue()
# 序号数据进队列
for num in range(5000000):
queue.put(num)
# 多线程执行程序
consumer_lst = []
for _ in range(10):
thread = threading.Thread(target=run)
thread.start()
consumer_lst.append(thread)
for consumer in consumer_lst:
consumer.join()
end = time.time()
print('程序执行完毕!花费时间:', end - start)
运行结果:
2.批量插入5000000条数据
先创建索引personal_info_5000000_v2,确定好mapping后,再插入数据。
新建索引并设置mapping信息:
PUT personal_info_5000000_v2
{
"settings": {
"number_of_shards": 3,
"number_of_replicas": 1
},
"mappings": {
"properties": {
"id": {
"type": "long"
},
"name": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 32
}
}
},
"sex": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 8
}
}
},
"age": {
"type": "long"
},
"character": {
"type": "text",
"analyzer": "ik_smart",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"subject": {
"type": "text",
"fields": {
"keyword": {
"type": "keyword",
"ignore_above": 256
}
}
},
"grade": {
"type": "long"
},
"create_time": {
"type": "date",
"format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
}
}
}
}
查看新建索引信息:
GET personal_info_5000000_v2
{
"personal_info_5000000_v2" : {
"aliases" : { },
"mappings" : {
"properties" : {
"age" : {
"type" : "long"
},
"character" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
},
"analyzer" : "ik_smart"
},
"create_time" : {
"type" : "date",
"format" : "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
},
"grade" : {
"type" : "long"
},
"id" : {
"type" : "long"
},
"name" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 32
}
}
},
"sex" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 8
}
}
},
"subject" : {
"type" : "text",
"fields" : {
"keyword" : {
"type" : "keyword",
"ignore_above" : 256
}
}
}
}
},
"settings" : {
"index" : {
"routing" : {
"allocation" : {
"include" : {
"_tier_preference" : "data_content"
}
}
},
"number_of_shards" : "3",
"provided_name" : "personal_info_5000000_v2",
"creation_date" : "1663485323617",
"number_of_replicas" : "1",
"uuid" : "XBPaDn_gREmAoJmdRyBMAA",
"version" : {
"created" : "7170699"
}
}
}
}
}
批量插入数据:
通过elasticsearch模块导入helper,通过helper.bulk来批量处理大量的数据。首先将所有的数据定义成字典形式,各字段含义如下:
- _index对应索引名称,并且该索引必须存在。
- _type对应类型名称。
- _source对应的字典内,每一篇文档的字段和值,可有有多个字段。
示例代码: 【程序中途异常,写入4714000条数据】
from elasticsearch import Elasticsearch
from elasticsearch import helpers
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
'努力、积极、乐观、拼搏是我的人生信条',
'抗压能力强,能够快速适应周围环境',
'敢做敢拼,脚踏实地;做事认真负责,责任心强',
'爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
'主动性强,自学能力强,具有团队合作意识,有一定组织能力',
'忠实诚信,讲原则,说到做到,决不推卸责任',
'有自制力,做事情始终坚持有始有终,从不半途而废',
'肯学习,有问题不逃避,愿意虚心向他人学习',
'愿意以谦虚态度赞扬接纳优越者,权威者',
'会用100%的热情和精力投入到工作中;平易近人',
'为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
'有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# 添加程序耗时的功能
def timer(func):
def wrapper(*args, **kwargs):
start = time.time()
res = func(*args, **kwargs)
end = time.time()
print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start))
return res
return wrapper
@timer
def save_to_es(num):
"""
批量写入数据到es数据库
:param num:
:return:
"""
action = [
{
"_index": "personal_info_5000000_v2",
"_type": "_doc",
"_id": i,
"_source": {
"id": i,
"name": random.choice(names),
"sex": random.choice(sexs),
"age": random.choice(age),
"character": random.choice(character),
"subject": random.choice(subjects),
"grade": random.choice(grades),
"create_time": create_time
}
} for i in range(10000 * num, 10000 * num + 10000)
]
helpers.bulk(es, action)
def run():
global queue
while queue.qsize() > 0:
num = queue.get()
print(num)
save_to_es(num)
if __name__ == '__main__':
start = time.time()
queue = Queue()
# 序号数据进队列
for num in range(500):
queue.put(num)
# 多线程执行程序
consumer_lst = []
for _ in range(10):
thread = threading.Thread(target=run)
thread.start()
consumer_lst.append(thread)
for consumer in consumer_lst:
consumer.join()
end = time.time()
print('程序执行完毕!花费时间:', end - start)
运行结果:
3.批量插入50000000条数据
先创建索引personal_info_5000000_v2,确定好mapping后,再插入数据。
此过程是在上面批量插入的前提下进行优化,采用python生成器。
建立索引和mapping同上,直接上代码:
示例代码: 【程序中途异常,写入3688000条数据】
from elasticsearch import Elasticsearch
from elasticsearch import helpers
from datetime import datetime
from queue import Queue
import random
import time
import threading
es = Elasticsearch(hosts='http://127.0.0.1:9200')
# print(es)
names = ['刘一', '陈二', '张三', '李四', '王五', '赵六', '孙七', '周八', '吴九', '郑十']
sexs = ['男', '女']
age = [25, 28, 29, 32, 31, 26, 27, 30]
character = ['自信但不自负,不以自我为中心',
'努力、积极、乐观、拼搏是我的人生信条',
'抗压能力强,能够快速适应周围环境',
'敢做敢拼,脚踏实地;做事认真负责,责任心强',
'爱好所学专业,乐于学习新知识;对工作有责任心;踏实,热情,对生活充满激情',
'主动性强,自学能力强,具有团队合作意识,有一定组织能力',
'忠实诚信,讲原则,说到做到,决不推卸责任',
'有自制力,做事情始终坚持有始有终,从不半途而废',
'肯学习,有问题不逃避,愿意虚心向他人学习',
'愿意以谦虚态度赞扬接纳优越者,权威者',
'会用100%的热情和精力投入到工作中;平易近人',
'为人诚恳,性格开朗,积极进取,适应力强、勤奋好学、脚踏实地',
'有较强的团队精神,工作积极进取,态度认真']
subjects = ['语文', '数学', '英语', '生物', '地理']
grades = [85, 77, 96, 74, 85, 69, 84, 59, 67, 69, 86, 96, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86]
create_time = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
# 添加程序耗时的功能
def timer(func):
def wrapper(*args, **kwargs):
start = time.time()
res = func(*args, **kwargs)
end = time.time()
print('id{}共耗时约 {:.2f} 秒'.format(*args, end - start))
return res
return wrapper
@timer
def save_to_es(num):
"""
使用生成器批量写入数据到es数据库
:param num:
:return:
"""
action = (
{
"_index": "personal_info_5000000_v3",
"_type": "_doc",
"_id": i,
"_source": {
"id": i,
"name": random.choice(names),
"sex": random.choice(sexs),
"age": random.choice(age),
"character": random.choice(character),
"subject": random.choice(subjects),
"grade": random.choice(grades),
"create_time": create_time
}
} for i in range(10000 * num, 10000 * num + 10000)
)
helpers.bulk(es, action)
def run():
global queue
while queue.qsize() > 0:
num = queue.get()
print(num)
save_to_es(num)
if __name__ == '__main__':
start = time.time()
queue = Queue()
# 序号数据进队列
for num in range(500):
queue.put(num)
# 多线程执行程序
consumer_lst = []
for _ in range(10):
thread = threading.Thread(target=run)
thread.start()
consumer_lst.append(thread)
for consumer in consumer_lst:
consumer.join()
end = time.time()
print('程序执行完毕!花费时间:', end - start)
运行结果: