进程是独立的资源空间,每个进程都有自己独立的页表;
用户进程创建页表发生在三个时刻: 创建进程fork时; 缺页异常时; 进程切换时;
1.创建进程fork
核心函数
__do_fork()
-->copy_process
-->dup_mm()
dum_mm函数
static struct mm_struct *dup_mm(struct task_struct *tsk,
struct mm_struct *oldmm)
{
struct mm_struct *mm;
int err;
mm = allocate_mm();
if (!mm)
goto fail_nomem;
memcpy(mm, oldmm, sizeof(*mm));
if (!mm_init(mm, tsk, mm->user_ns)) ///分配私有的pgd页面
goto fail_nomem;
err = dup_mmap(mm, oldmm); ///拷贝父进程页表
...
}
第一步 分配pgd物理页面
pgd_alloc函数
mm_init()->mm_alloc_pgd()->pgd_alloc()
pgd_t *pgd_alloc(struct mm_struct *mm)
{
gfp_t gfp = GFP_PGTABLE_USER;
if (PGD_SIZE == PAGE_SIZE)
return (pgd_t *)__get_free_page(gfp); ///从伙伴系统分配物理页
else
return kmem_cache_alloc(pgd_cache, gfp);
}
第二步 拷贝父进程页表
拷贝vma
依次调用
copy_mm()
->dum_mm()
->dum_mmap()
->copy_page_range()
int
copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
{
...
do {
next = pgd_addr_end(addr, end);
if (pgd_none_or_clear_bad(src_pgd))
continue;
if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
addr, next))) { ///遍历拷贝页表
ret = -ENOMEM;
break;
}
} while (dst_pgd++, src_pgd++, addr = next, addr != end);
...
}
拷贝pte页
依次调用
copy_p4d_range()
->copy_pud_range()
->copy_pmd_range()
->copy_pte_range()
->copy_present_pte()
/*
* Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
* is required to copy this pte.
*/
static inline int
copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
struct page **prealloc)
{
...
/*
* If it's a COW mapping, write protect it both
* in the parent and the child
*/
if (is_cow_mapping(vm_flags) && pte_write(pte)) { ///如果是COW页,父进程,子进程页面都设置为只读
ptep_set_wrprotect(src_mm, addr, src_pte);
pte = pte_wrprotect(pte);
}
...
return 0;
}
这样所有页表拷贝完毕,等进程写只读vma时,写时拷贝,触发缺页异常,在异常服务里真正分配物理页面;
2 缺页异常
wp_page_copy
写时复制引起的缺页异常,核心处理函数
static vm_fault_t wp_page_copy(struct vm_fault *vmf)
{
struct vm_area_struct *vma = vmf->vma;
struct mm_struct *mm = vma->vm_mm;
struct page *old_page = vmf->page;
struct page *new_page = NULL;
pte_t entry;
int page_copied = 0;
struct mmu_notifier_range range;
if (unlikely(anon_vma_prepare(vma))) ///检查VMA是否初始化了RMAP
goto oom;
if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { ///PTE如果是系统零页,分配一个内容全零的页面
new_page = alloc_zeroed_user_highpage_movable(vma,
vmf->address);
if (!new_page)
goto oom;
} else { ///分配一个新物理页面,并且把old_page内容复制到new_page中
new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
vmf->address);
if (!new_page)
goto oom;
if (!cow_user_page(new_page, old_page, vmf)) {
/*
* COW failed, if the fault was solved by other,
* it's fine. If not, userspace would re-fault on
* the same address and we will handle the fault
* from the second attempt.
*/
put_page(new_page);
if (old_page)
put_page(old_page);
return 0;
}
}
if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
goto oom_free_new;
cgroup_throttle_swaprate(new_page, GFP_KERNEL);
__SetPageUptodate(new_page); ///设置PG_uptodate, 表示内容有效
///注册一个mmu_notifier,并告知系统使dd_page无效
mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
vmf->address & PAGE_MASK,
(vmf->address & PAGE_MASK) + PAGE_SIZE);
mmu_notifier_invalidate_range_start(&range);
/*
* Re-check the pte - we dropped the lock
*/ ///重新读取PTE,并判定是否修改
vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
if (old_page) {
if (!PageAnon(old_page)) {
dec_mm_counter_fast(mm,
mm_counter_file(old_page));
inc_mm_counter_fast(mm, MM_ANONPAGES);
}
} else {
inc_mm_counter_fast(mm, MM_ANONPAGES);
}
flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
entry = mk_pte(new_page, vma->vm_page_prot);
entry = maybe_mkwrite(pte_mkdirty(entry), vma); ///生成一个新PTE
/*
* Clear the pte entry and flush it first, before updating the
* pte with the new entry, to keep TLBs on different CPUs in
* sync. This code used to set the new PTE then flush TLBs, but
* that left a window where the new PTE could be loaded into
* some TLBs while the old PTE remains in others.
*/
ptep_clear_flush_notify(vma, vmf->address, vmf->pte); ///刷新这个页面的TLB
page_add_new_anon_rmap(new_page, vma, vmf->address, false); ///new_page添加到RMAP系统中
lru_cache_add_inactive_or_unevictable(new_page, vma); ///new_page添加到LRU链表中
/*
* We call the notify macro here because, when using secondary
* mmu page tables (such as kvm shadow page tables), we want the
* new page to be mapped directly into the secondary page table.
*/
set_pte_at_notify(mm, vmf->address, vmf->pte, entry); ///新pte设置到硬件PTE中
update_mmu_cache(vma, vmf->address, vmf->pte);
if (old_page) {
/*
* Only after switching the pte to the new page may
* we remove the mapcount here. Otherwise another
* process may come and find the rmap count decremented
* before the pte is switched to the new page, and
* "reuse" the old page writing into it while our pte
* here still points into it and can be read by other
* threads.
*
* The critical issue is to order this
* page_remove_rmap with the ptp_clear_flush above.
* Those stores are ordered by (if nothing else,)
* the barrier present in the atomic_add_negative
* in page_remove_rmap.
*
* Then the TLB flush in ptep_clear_flush ensures that
* no process can access the old page before the
* decremented mapcount is visible. And the old page
* cannot be reused until after the decremented
* mapcount is visible. So transitively, TLBs to
* old page will be flushed before it can be reused.
*/
page_remove_rmap(old_page, false);
}
/* Free the old page.. */
new_page = old_page;
page_copied = 1;
} else {
update_mmu_tlb(vma, vmf->address, vmf->pte);
}
if (new_page)
put_page(new_page);
pte_unmap_unlock(vmf->pte, vmf->ptl);
/*
* No need to double call mmu_notifier->invalidate_range() callback as
* the above ptep_clear_flush_notify() did already call it.
*/
mmu_notifier_invalidate_range_only_end(&range);
if (old_page) {
/*
* Don't let another task, with possibly unlocked vma,
* keep the mlocked page.
*/
if (page_copied && (vma->vm_flags & VM_LOCKED)) {
lock_page(old_page); /* LRU manipulation */
if (PageMlocked(old_page))
munlock_vma_page(old_page);
unlock_page(old_page);
}
put_page(old_page);
}
return page_copied ? VM_FAULT_WRITE : 0;
oom_free_new:
put_page(new_page);
oom:
if (old_page)
put_page(old_page);
return VM_FAULT_OOM;
}
3.进程切换
用户进程切换时,内存相关的主要做两件事情: (1)设置进程的ASID到ttbr1_el1; (2)设置mm->pgd到ttbr0_el1完成地址空间切换;
依次调用
context_switch()
->switch_mm_irqs_off()
->switch_mm()
->__switch_mm()
->check_and_switch_context()
->cpu_switch_mm()
->cpu_do_switch_mm()
void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm)
{
unsigned long ttbr1 = read_sysreg(ttbr1_el1);
unsigned long asid = ASID(mm);
unsigned long ttbr0 = phys_to_ttbr(pgd_phys);
/* Skip CNP for the reserved ASID */
if (system_supports_cnp() && asid)
ttbr0 |= TTBR_CNP_BIT;
/* SW PAN needs a copy of the ASID in TTBR0 for entry */
if (IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN))
ttbr0 |= FIELD_PREP(TTBR_ASID_MASK, asid);
/* Set ASID in TTBR1 since TCR.A1 is set */
ttbr1 &= ~TTBR_ASID_MASK;
ttbr1 |= FIELD_PREP(TTBR_ASID_MASK, asid);
write_sysreg(ttbr1, ttbr1_el1); ///ASID填入ttbr1_el1
isb();
write_sysreg(ttbr0, ttbr0_el1); ///新进程页表基地址pgd,填入ttbr0_el1
isb();
post_ttbr_update_workaround();
}