一、线性分类判别
对于二分类问题,LDA针对的是:数据服从高斯分布,且均值不同,方差相同。
概率密度:
p是数据的维度。
分类判别函数:
可以看出结果是关于x的一次函数:wx+w0,线性分类判别的说法由此得来。
参数计算:
二、二次分类判别
对于二分类问题,QDA针对的是:数据服从高斯分布,且均值不同,方差不同。
数据方差相同的时候,一次判别就可以,如左图所示;但如果方差差别较大,就是一个二次问题了,像右图那样。
从sklearn给的例子中,也容易观察到:
QDA对数据有更好的适用性,QDA判别公式:
三、Fisher判据
A-Fisher理论推导
Fisher一个总原则是:投影之后的数据,最小化类内误差,同时最大化类间误差
其中,分别对应投影后的类均值。对应投影后的类内方差。
重写类内总方差、类间距离:
准则函数重写:
容易求解:
其中常借助SVD求解:Sw = U∑VT,Sw-1 = U∑-1VT,借助特征值分解也是可以的。