1、SynchronousQueue
package com.blockingqueue; import java.util.concurrent.BlockingQueue; import java.util.concurrent.SynchronousQueue; import java.util.concurrent.TimeUnit; /** * 同步队列 SynchronousQueue不存储元素,put了一个元素,必须从里边先取出来,然后再放入 */ public class SynchronousQueueDemo { public static void main(String[] args) { BlockingQueue<String> blockingQueue = new SynchronousQueue<>();//同步队列 new Thread(()->{ try { System.out.println(Thread.currentThread().getName()+"put1"); blockingQueue.put("1"); System.out.println(Thread.currentThread().getName()+"put2"); blockingQueue.put("2"); System.out.println(Thread.currentThread().getName()+"put3"); blockingQueue.put("3"); } catch (InterruptedException e) { e.printStackTrace(); } },"A").start(); new Thread(()->{ try { TimeUnit.SECONDS.sleep(3); System.out.println(Thread.currentThread().getName()+blockingQueue.take()); TimeUnit.SECONDS.sleep(3); System.out.println(Thread.currentThread().getName()+blockingQueue.take()); TimeUnit.SECONDS.sleep(3); System.out.println(Thread.currentThread().getName()+blockingQueue.take()); } catch (InterruptedException e) { e.printStackTrace(); } },"B").start(); } }
2、线程池(重点)
线程池:三大方法、7大参数、4种拒绝策略
池化技术
程序的运行、本质:占用系统的资源|优化资源的使用==》池化技术
线程池、连接池、内存池、对象池。。。创建、销毁、浪费资源
池化技术:事先准备好一些资源,有人要用,就来我这里拿,用完之后还给我
线程池的好处:
1、降低资源的消耗
2、提高响应的的速度
3、方便管理
线程复用、可以控制最大并发数,管理线程
2.1 使用单例
package com.threadpool; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class Demo1 { public static void main(String[] args) { ExecutorService threadpool = Executors.newSingleThreadExecutor();//单个线程 try { for (int i = 0; i < 10; i++) { //使用线程池之后,使用线程池来创建线程 threadpool.execute(()->{ System.out.println(Thread.currentThread().getName()+"ok"); }); } } catch (Exception e) { e.printStackTrace(); } finally { threadpool.shutdown(); } } }
2.2、使用固定大小的线程
package com.threadpool; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class Demo1 { public static void main(String[] args) { // ExecutorService threadpool = Executors.newSingleThreadExecutor();//单个线程 ExecutorService threadpool = Executors.newFixedThreadPool(5);//创建一个固定大小的线程池的大小 try { for (int i = 0; i < 10; i++) { //使用线程池之后,使用线程池来创建线程 threadpool.execute(()->{ System.out.println(Thread.currentThread().getName()+"ok"); }); } } catch (Exception e) { e.printStackTrace(); } finally { threadpool.shutdown(); } } }
2.3、缓存线程池
package com.threadpool; import java.util.concurrent.ExecutorService; import java.util.concurrent.Executors; public class Demo1 { public static void main(String[] args) { // ExecutorService threadpool = Executors.newSingleThreadExecutor();//单个线程 // ExecutorService threadpool = Executors.newFixedThreadPool(5);//创建一个固定大小的线程池的大小 ExecutorService threadpool = Executors.newCachedThreadPool();//可伸缩的,遇强则强,遇弱则弱 try { for (int i = 0; i < 10; i++) { //使用线程池之后,使用线程池来创建线程 threadpool.execute(()->{ System.out.println(Thread.currentThread().getName()+"ok"); }); } } catch (Exception e) { e.printStackTrace(); } finally { threadpool.shutdown(); } } }
2.4 七大参数
源码分析
本质上是ThreadPoolExecutor
源码:
public ThreadPoolExecutor(int corePoolSize,//核心线程池大小 int maximumPoolSize,//最大核心线程池大小 long keepAliveTime,//超时了,每没有人调用就会释放 TimeUnit unit,//超时单位 BlockingQueue<Runnable> workQueue,//阻塞队列 ThreadFactory threadFactory,//线程工厂,创建线程的,一般不用动 RejectedExecutionHandler handler) {//拒绝策略 if (corePoolSize < 0 || maximumPoolSize <= 0 || maximumPoolSize < corePoolSize || keepAliveTime < 0) throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null) throw new NullPointerException(); this.corePoolSize = corePoolSize; this.maximumPoolSize = maximumPoolSize; this.workQueue = workQueue; this.keepAliveTime = unit.toNanos(keepAliveTime); this.threadFactory = threadFactory; this.handler = handler; }
四种拒绝策略
1、ThreadPoolExecutor.AbortPolicy()
银行满了,还有人进来,不处理这个人的,抛出异常
2、ThreadPoolExecutor.CallerRunsPolicy()
银行满了,还有人进来,哪来的去哪里
3、ThreadPoolExecutor.DiscardPolicy()
队列满了、不会抛出异常
4、ThreadPoolExecutor.DiscardOldestPolicy()
队列满了、尝试去和最早的竞争,也不会抛出异常
1、cpu密集型,几核,就是几,可以保证CPU的效率最高!!!Runtime.getRuntime().availableProcessors()
2、IO密集型 判断你程序中十分耗IO的线程
程序 15个大型任务,io十分占用资源