searchusermenu
  • 发布文章
  • 消息中心
点赞
收藏
评论
分享
原创

昇腾CANN计算体系及基础

2024-09-26 09:27:23
32
0

CANN是什么

异构计算架构CANN(Compute Architecture for Neural Networks)是华为针对AI场景推出的异构计算架构,向上支持多种AI框架,包括MindSpore、PyTorch、TensorFlow等,向下服务AI处理器与编程,发挥承上启下的关键作用,是提升昇腾AI处理器计算效率的关键平台。同时针对多样化应用场景,提供多层次编程接口,支持用户快速构建基于昇腾平台的AI应用和业务。类比英伟达的cuda。

总体架构

CANN提供了功能强大、适配性好、可自定义开发的AI异构计算架构,自顶向下分为5部分。

  • 昇腾计算语言(Ascend Computing Language,简称AscendCL):AscendCL接口是昇腾计算开放编程框架,是对底层昇腾计算服务接口的封装。它提供设备(Device)管理、上下文(Context)管理、流(Stream)管理、内存管理、模型加载与执行、算子加载与执行、媒体数据处理、图(Graph)管理等API库,供用户开发人工智能应用。
  • 昇腾计算服务层(Ascend Computing Service Layer): 主要提供昇腾算子库AOL(Ascend Operator Library),通用神经网络(Neural Network,NN)库、线性代数计算库(Basic Linear Algebra Subprograms,BLAS)等高性能算子加速计算;昇腾调优引擎AOE(Ascend Optimization Engine),通过算子调优OPAT、子图调优SGAT、梯度调优GDAT、模型压缩AMCT提升模型端到端运行速度。同时提供AI框架适配器Framework Adaptor用于兼容TensorFlow、PyTorch等主流AI框架。
  • 昇腾计算编译层(Ascend Computing Compilation Layer):昇腾计算编译层通过图编译器(Graph Compiler)将用户输入中间表达(Intermediate Representation,IR)的计算图编译成昇腾硬件可执行模型;同时借助张量加速引擎TBE(Tensor Boost Engine)的自动调度机制,高效编译算子。
  • 昇腾计算执行层(Ascend Computing Execution Layer):负责模型和算子的执行,提供运行时库(Runtime)、图执行器(Graph Executor)、数字视觉预处理(Digital Vision Pre-Processing,DVPP)、人工智能预处理(Artificial Intelligence Pre-Processing,AIPP)、华为集合通信库(Huawei Collective Communication Library,HCCL)等功能单元。
  • 昇腾计算基础层(Ascend Computing Base Layer):主要为其上各层提供基础服务,如共享虚拟内存(Shared Virtual Memory,SVM)、设备虚拟化(Virtual Machine,VM)、主机-设备通信(Host Device Communication,HDC)等。

关键功能特性

  • 推理应用开发

CANN提供了在昇腾平台上开发神经网络应用的昇腾计算语言AscendCL(Ascend Computing Language),提供运行资源管理、内存管理、模型加载与执行、算子加载与执行、媒体数据处理等API,实现利用昇腾硬件计算资源、在昇腾CANN平台上进行深度学习推理计算、图形图像预处理、单算子加速计算等能力。简单来说,就是统一的API框架,实现对所有资源的调用​。

  • 模型训练

CANN针对训练任务提供了完备的支持,针对PyTorch、TensorFlow等开源框架网络模型,CANN提供了模型迁移工具,支持将其快速迁移到昇腾平台。此外,CANN还提供了多种自动化调测工具,支持数据异常检测、融合异常检测、整网数据比对等,帮助开发者高效问题定位。

  • 算子开发

CANN提供了超过1400个硬件亲和的高性能算子,可覆盖主流AI框架的算子加速需求,同时,为满足开发者的算法创新需求,CANN开放了自定义算子开发的能力,开发者可根据自身需求选择不同的算子开发方式。

Ascend C

Ascend C 是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,最大化匹配用户开发习惯;通过多层接口抽象、自动并行计算、孪生调试等关键技术,极大提高算子开发效率,助力AI开发者低成本完成算子开发和模型调优部署。

0条评论
0 / 1000
袁****浩
2文章数
0粉丝数
袁****浩
2 文章 | 0 粉丝
袁****浩
2文章数
0粉丝数
袁****浩
2 文章 | 0 粉丝
原创

昇腾CANN计算体系及基础

2024-09-26 09:27:23
32
0

CANN是什么

异构计算架构CANN(Compute Architecture for Neural Networks)是华为针对AI场景推出的异构计算架构,向上支持多种AI框架,包括MindSpore、PyTorch、TensorFlow等,向下服务AI处理器与编程,发挥承上启下的关键作用,是提升昇腾AI处理器计算效率的关键平台。同时针对多样化应用场景,提供多层次编程接口,支持用户快速构建基于昇腾平台的AI应用和业务。类比英伟达的cuda。

总体架构

CANN提供了功能强大、适配性好、可自定义开发的AI异构计算架构,自顶向下分为5部分。

  • 昇腾计算语言(Ascend Computing Language,简称AscendCL):AscendCL接口是昇腾计算开放编程框架,是对底层昇腾计算服务接口的封装。它提供设备(Device)管理、上下文(Context)管理、流(Stream)管理、内存管理、模型加载与执行、算子加载与执行、媒体数据处理、图(Graph)管理等API库,供用户开发人工智能应用。
  • 昇腾计算服务层(Ascend Computing Service Layer): 主要提供昇腾算子库AOL(Ascend Operator Library),通用神经网络(Neural Network,NN)库、线性代数计算库(Basic Linear Algebra Subprograms,BLAS)等高性能算子加速计算;昇腾调优引擎AOE(Ascend Optimization Engine),通过算子调优OPAT、子图调优SGAT、梯度调优GDAT、模型压缩AMCT提升模型端到端运行速度。同时提供AI框架适配器Framework Adaptor用于兼容TensorFlow、PyTorch等主流AI框架。
  • 昇腾计算编译层(Ascend Computing Compilation Layer):昇腾计算编译层通过图编译器(Graph Compiler)将用户输入中间表达(Intermediate Representation,IR)的计算图编译成昇腾硬件可执行模型;同时借助张量加速引擎TBE(Tensor Boost Engine)的自动调度机制,高效编译算子。
  • 昇腾计算执行层(Ascend Computing Execution Layer):负责模型和算子的执行,提供运行时库(Runtime)、图执行器(Graph Executor)、数字视觉预处理(Digital Vision Pre-Processing,DVPP)、人工智能预处理(Artificial Intelligence Pre-Processing,AIPP)、华为集合通信库(Huawei Collective Communication Library,HCCL)等功能单元。
  • 昇腾计算基础层(Ascend Computing Base Layer):主要为其上各层提供基础服务,如共享虚拟内存(Shared Virtual Memory,SVM)、设备虚拟化(Virtual Machine,VM)、主机-设备通信(Host Device Communication,HDC)等。

关键功能特性

  • 推理应用开发

CANN提供了在昇腾平台上开发神经网络应用的昇腾计算语言AscendCL(Ascend Computing Language),提供运行资源管理、内存管理、模型加载与执行、算子加载与执行、媒体数据处理等API,实现利用昇腾硬件计算资源、在昇腾CANN平台上进行深度学习推理计算、图形图像预处理、单算子加速计算等能力。简单来说,就是统一的API框架,实现对所有资源的调用​。

  • 模型训练

CANN针对训练任务提供了完备的支持,针对PyTorch、TensorFlow等开源框架网络模型,CANN提供了模型迁移工具,支持将其快速迁移到昇腾平台。此外,CANN还提供了多种自动化调测工具,支持数据异常检测、融合异常检测、整网数据比对等,帮助开发者高效问题定位。

  • 算子开发

CANN提供了超过1400个硬件亲和的高性能算子,可覆盖主流AI框架的算子加速需求,同时,为满足开发者的算法创新需求,CANN开放了自定义算子开发的能力,开发者可根据自身需求选择不同的算子开发方式。

Ascend C

Ascend C 是CANN针对算子开发场景推出的编程语言,原生支持C和C++标准规范,最大化匹配用户开发习惯;通过多层接口抽象、自动并行计算、孪生调试等关键技术,极大提高算子开发效率,助力AI开发者低成本完成算子开发和模型调优部署。

文章来自个人专栏
通识
2 文章 | 1 订阅
0条评论
0 / 1000
请输入你的评论
1
0