1、什么是函数
在 SQL 中,我们可以把一些数据的转换操作包装起来,嵌入到 SQL 查询中统一调用,这就是“函数”(functions)。Flink 的 Table API 和 SQL 同样提供了函数的功能。两者在调用时略有不同:Table API 中的函数是通过数据对象的方法调用来实现的;而 SQL 则是直接引用函数名称,传入数据作为参数。例如,要把一个字符串 str 转换成全大写的形式,Table API 的写法是调用 str 这个 String对象的 upperCase()方法:
str.upperCase();
而 SQL 中的写法就是直接引用 UPPER()函数,将 str 作为参数传入:
UPPER(str)
由于 Table API 是内嵌在 Java 语言中的,很多方法需要在类中额外添加,因此扩展功能比较麻烦,目前支持的函数比较少;而且 Table API 也不如 SQL 的通用性强,所以一般情况下较少使用。下面我们主要介绍 Flink SQL 中函数的使用。Flink SQL 中的函数可以分为两类:一类是 SQL 中内置的系统函数,直接通过函数名调用就可以,能够实现一些常用的转换操作,比如之前我们用到的 COUNT()、CHAR_LENGTH()、UPPER()等等;而另一类函数则是用户自定义的函数(UDF),需要在表环境中注册才能使用。
2、什么是自定义UDF函数
系统函数尽管庞大,也不可能涵盖所有的功能;如果有系统函数不支持的需求,我们就需要用自定义函数(User Defined Functions,UDF)来实现了。事实上,系统内置函数仍然在不断扩充,如果我们认为自己实现的自定义函数足够通用、应用非常广泛,也可以在项目跟踪工具 JIRA 上向 Flink 开发团队提出“议题”(issue),请求将新的函数添加到系统函数中。
2.1 编写自定义UDF函数
自定义一个ScalarFunction,传入一个String类型的参数,输出这个参数的hashCode
public class HashScalarFunction extends ScalarFunction {
public String eval(String str){
return String.valueOf(str.hashCode());
}
}
2.2 在代码中以SQL方式使用UDF函数
2.2.1 读取mysql数据使用UDF函数转换并输出到控制台
package cn.ctyun.demo.flinksql;
import cn.ctyun.demo.flinksql.udf.HashScalarFunction;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.Table;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
/**
* @Date 2023/4/14 14:38
* @Description 读取mysql数据使用UDF函数转换并输出到控制台
*/
public class FlinkSqlUdfMysql2Print {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
// 1. 创建读取表,使用mysql进行
String source_ddl = "CREATE TABLE UserSource (" +
" id INT, " +
" name VARCHAR, " +
" phone VARCHAR, " +
" sex INT " +
") WITH (" +
" 'connector.type' = 'jdbc', " +
" 'connector.url' = 'jdbc:mysql://*******:3306/flink_test_source?useSSL=false', " +
" 'connector.table' = 'test_user_table', " +
" 'connector.username' = 'root', " +
" 'connector.password' = '******'" +
")";
tableEnv.executeSql(source_ddl);
// 3. 注册自定义标量函数
tableEnv.createTemporarySystemFunction("MyHash", HashScalarFunction.class);
// 4. 调用UDF查询转换
Table resultTable = tableEnv.sqlQuery("select id, name, phone, sex, MyHash(name) as name_hash from UserSource");
// 5. 输出到控制台
tableEnv.executeSql("create table output (" +
"id INT, " +
"name STRING, " +
"phone STRING, " +
"sex INT, " +
"name_hash STRING ) " +
"WITH (" +
"'connector' = 'print')");
resultTable.executeInsert("output");
}
}
2.2.2 读取mysql数据使用UDF函数转换并输出到mysql
package cn.ctyun.demo.flinksql;
import cn.ctyun.demo.flinksql.udf.HashScalarFunction;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;
/**
* @Date 2023/4/14 14:50
* @Description 读取mysql数据使用UDF函数转换并输出到mysql
*/
public class FlinkSqlUdfMysql2Mysql {
public static void main(String[] args) {
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);
// 1. 创建读取表,使用mysql进行
String source_ddl = "CREATE TABLE UserSource (" +
" id INT, " +
" name VARCHAR, " +
" phone VARCHAR, " +
" sex INT " +
") WITH (" +
" 'connector.type' = 'jdbc', " +
" 'connector.url' = 'jdbc:mysql://*******:3306/flink_test_source?useSSL=false', " +
" 'connector.table' = 'test_user_table', " +
" 'connector.username' = 'root', " +
" 'connector.password' = '*******'" +
")";
tableEnv.executeSql(source_ddl);
// 2. 创建写出表,使用mysql进行
String sink_ddl = "CREATE TABLE UserSink (" +
"id INT, " +
"name STRING, " +
"phone STRING, " +
"sex INT, " +
"name_hash STRING " +
") WITH (" +
" 'connector.type' = 'jdbc', " +
" 'connector.url' = 'jdbc:mysql://*******:3306/flink_test_sink?useSSL=false', " +
" 'connector.table' = 'test_user_table_udf', " +
" 'connector.username' = 'root', " +
" 'connector.password' = '********'" +
")";
tableEnv.executeSql(sink_ddl);
// 3. 注册自定义标量函数
tableEnv.createTemporarySystemFunction("MyHash", HashScalarFunction.class);
// 4. 使用insert语句进行数据输出,在这里进行UDF查询转换
String insertSql = "INSERT INTO UserSink select id, name, phone, sex, MyHash(name) as name_hash from UserSource";
tableEnv.executeSql(insertSql);
}
}
2.3 在StreamPark中以SQL方式使用UDF函数
在StreamPark创建作业,导入作业依赖:
flink-connector-jdbc_2.12-1.14.3.jar
flink-demo-jar-job-1.0-SNAPSHOT.jar
mysql-connector-java-8.0.21.jar
FlinkSQL为:
CREATE FUNCTION MyHash AS 'cn.ctyun.demo.flinksql.udf.HashScalarFunction';
CREATE TABLE UserSource (
id INT,
name VARCHAR,
phone VARCHAR,
sex INT
) WITH (
'connector.type' = 'jdbc',
'connector.url' = 'jdbc:mysql://********:3306/flink_test_source?useSSL=false',
'connector.table' = 'test_user_table',
'connector.username' = 'root',
'connector.password' = '*********'
);
CREATE TABLE UserSink (
id INT,
name STRING,
phone STRING,
sex INT,
name_hash STRING
) WITH (
'connector.type' = 'jdbc',
'connector.url' = 'jdbc:mysql://*******:3306/flink_test_sink?useSSL=false',
'connector.table' = 'test_user_table_udf',
'connector.username' = 'root',
'connector.password' = '**********'
);
INSERT INTO UserSink select id, name, phone, sex, MyHash(name) as name_hash from UserSource;
运行作业后mysql可正常插入数据