searchusermenu
  • 发布文章
  • 消息中心
点赞
收藏
评论
分享
原创

GPU通信技术介绍

2023-08-28 07:29:32
36
0

1 nvlink介绍

       NVLink技术是在2014年3月的NVIDIA GTC 2014上发布的。对普通消费者来说,这一届的GTC似乎没有太多的亮点,也没有什么革命性的产品发布。这次GTC上,黄仁勋展示了新一代单卡双芯卡皇GeForce Titan Z,下一代GPU架构Pascal也只是初露峥嵘。在黄仁勋演讲中只用大约五六页PPT介绍的NVLink也很容易被普通消费者忽视,但是有心的专业人士确从此举看到了NVIDIA背后巨大的野心。

       NVLink能在多GPU之间和GPU与CPU之间实现非凡的连接带宽。带宽有多大?2016发布的P100是搭载NVLink的第一款产品,单个GPU具有160GB/s的带宽,相当于PCIe Gen3 * 16带宽的5倍。GTC 2017上发布的V100搭载的NVLink 2.0更是将GPU带宽提升到了300G/s,差不多是PCIe的10倍了。

2 NVLink信号与协议

NVLink控制器由3层组成,即物理层(PHY)、数据链路层(DL)以及交易层(TL)。

P100搭载的NVLink 1.0,每个P100有4个NVLink通道,每个拥有40GB/s的双向带宽,每个P100可以最大达到160GB/s带宽。

V100搭载的NVLink 2.0,每个V100增加了50%的NVLink通道达到6个,信号速度提升28%使得每个通道达到50G的双向带宽,因而每个V100可以最大达到300GB/s的带宽。

下图是HGX-1/DGX-1使用的8个V100的混合立方网格拓扑结构,我们看到虽然V100有6个NVlink通道,但是实际上因为无法做到全连接,2个GPU间最多只能有2个NVLink通道100G/s的双向带宽。而GPU与CPU间通信仍然使用PCIe总线。CPU间通信使用QPI总线。这个拓扑虽然有一定局限性,但依然大幅提升了同一CPU Node和跨CPU Node的GPU间通信带宽。

3 NVSwitch

       为了解决混合立方网格拓扑结构的问题,NVIDIA在GTC 2018上发布了NVSwitch。类似于PCIe使用PCIe Switch用于拓扑的扩展,NVIDIA使用NVSwitch实现了NVLink的全连接。NVSwitch作为首款节点交换架构,可支持单个服务器节点中 16 个全互联的 GPU,并可使全部 8 个 GPU 对分别以 300 GB/s 的惊人速度进行同时通信。这 16 个全互联的 GPU (32G显存V100)还可作为单个大型加速器,拥有 0.5 TB 统一显存空间和 2 PetaFLOPS 计算性能。关于NVSwitch的相关技术细节可以参考NVIDIA官方技术文档。应该说这一技术的引入,使得GPU间通信的带宽又大大上了一个台阶。下图是nvswitch的性能说明。

4性能

       使用NVSwitch的DGX-2则能够达到2倍以上的深度学习和高性能计算的加速。

0条评论
作者已关闭评论
西南messi
5文章数
0粉丝数
西南messi
5 文章 | 0 粉丝
西南messi
5文章数
0粉丝数
西南messi
5 文章 | 0 粉丝
原创

GPU通信技术介绍

2023-08-28 07:29:32
36
0

1 nvlink介绍

       NVLink技术是在2014年3月的NVIDIA GTC 2014上发布的。对普通消费者来说,这一届的GTC似乎没有太多的亮点,也没有什么革命性的产品发布。这次GTC上,黄仁勋展示了新一代单卡双芯卡皇GeForce Titan Z,下一代GPU架构Pascal也只是初露峥嵘。在黄仁勋演讲中只用大约五六页PPT介绍的NVLink也很容易被普通消费者忽视,但是有心的专业人士确从此举看到了NVIDIA背后巨大的野心。

       NVLink能在多GPU之间和GPU与CPU之间实现非凡的连接带宽。带宽有多大?2016发布的P100是搭载NVLink的第一款产品,单个GPU具有160GB/s的带宽,相当于PCIe Gen3 * 16带宽的5倍。GTC 2017上发布的V100搭载的NVLink 2.0更是将GPU带宽提升到了300G/s,差不多是PCIe的10倍了。

2 NVLink信号与协议

NVLink控制器由3层组成,即物理层(PHY)、数据链路层(DL)以及交易层(TL)。

P100搭载的NVLink 1.0,每个P100有4个NVLink通道,每个拥有40GB/s的双向带宽,每个P100可以最大达到160GB/s带宽。

V100搭载的NVLink 2.0,每个V100增加了50%的NVLink通道达到6个,信号速度提升28%使得每个通道达到50G的双向带宽,因而每个V100可以最大达到300GB/s的带宽。

下图是HGX-1/DGX-1使用的8个V100的混合立方网格拓扑结构,我们看到虽然V100有6个NVlink通道,但是实际上因为无法做到全连接,2个GPU间最多只能有2个NVLink通道100G/s的双向带宽。而GPU与CPU间通信仍然使用PCIe总线。CPU间通信使用QPI总线。这个拓扑虽然有一定局限性,但依然大幅提升了同一CPU Node和跨CPU Node的GPU间通信带宽。

3 NVSwitch

       为了解决混合立方网格拓扑结构的问题,NVIDIA在GTC 2018上发布了NVSwitch。类似于PCIe使用PCIe Switch用于拓扑的扩展,NVIDIA使用NVSwitch实现了NVLink的全连接。NVSwitch作为首款节点交换架构,可支持单个服务器节点中 16 个全互联的 GPU,并可使全部 8 个 GPU 对分别以 300 GB/s 的惊人速度进行同时通信。这 16 个全互联的 GPU (32G显存V100)还可作为单个大型加速器,拥有 0.5 TB 统一显存空间和 2 PetaFLOPS 计算性能。关于NVSwitch的相关技术细节可以参考NVIDIA官方技术文档。应该说这一技术的引入,使得GPU间通信的带宽又大大上了一个台阶。下图是nvswitch的性能说明。

4性能

       使用NVSwitch的DGX-2则能够达到2倍以上的深度学习和高性能计算的加速。

文章来自个人专栏
异构计算
5 文章 | 1 订阅
0条评论
作者已关闭评论
作者已关闭评论
0
0