构键k8s集群
-
在这里,我们需要搭建一个K8S环境用于提供flink任务的运行时环境。在这里推荐使用kubeadm或者一些脚本工具搭建,可参考本自动k8s脚本工具。具体过程在这里省略,可以参考上述链接中的文档进行操作。
-
需要注意的是,我们需要在相应用户的目录下提供一个kubeconfig文件,如下图所示,通过该文件,StreamPark才能顺利地调用K8S客户端提交任务,该config的内容为与K8S的ApiServer进行连接时需要使用的信息。
提供flink运行任务的环境
-
将kubeconfig提供出来,供flink客户端调用
-
在这里主要提供一个供flink使用命名空间、和sa
# 创建namespace
kubectl create ns flink-dev
# 创建serviceaccount
kubectl create serviceaccount flink-service-account -n flink-dev
# 用户授权
kubectl create clusterrolebinding flink-role-binding-flink --clusterrole=edit --serviceaccount=flink-dev:flink-service-account
下载flink客户端
flink客户端是控制flink的核心,需要下载并部署
wget https://archive.apache.org/dist/flink/flink-1.14.3/flink-1.14.3-bin-scala_2.12.tgz
tar -xf flink-1.14.3-bin-scala_2.12.tgz
任务编程
任务jar生成过程
在这里,主要提供一个flink任务案例供flink k8s application进行调用
-
开发java代码,供使用,本示例项目较为简单,仅为将数据输出至mysql中,调用mysql-connector进行实现
package cn.ctyun.demo;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.connector.jdbc.JdbcConnectionOptions;
import org.apache.flink.connector.jdbc.JdbcSink;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
public class SinkToMySQL {
public static void main(String[] args) throws Exception {
// 从启动参数中获取连接信息
ParameterTool parameterTool = ParameterTool.fromArgs(new String[]{"url", "passwd", "user"});
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
DataStreamSource<Event> stream = env.fromElements(
new Event("Mary", "./home", 1000L),
new Event("Bob", "./cart", 2000L),
new Event("Alice", "./prod?id=100", 3000L),
new Event("Alice", "./prod?id=200", 3500L),
new Event("Bob", "./prod?id=2", 2500L),
new Event("Alice", "./prod?id=300", 3600L),
new Event("Bob", "./home", 3000L),
new Event("Bob", "./prod?id=1", 2300L),
new Event("Bob", "./prod?id=3", 3300L));
stream.addSink(
JdbcSink.sink(
"INSERT INTO clicks (user, url) VALUES (?, ?)",
(statement, r) -> {
statement.setString(1, r.user);
statement.setString(2, r.url);
},
new JdbcConnectionOptions.JdbcConnectionOptionsBuilder()
.withUrl(parameterTool.get("url"))
.withDriverName("com.mysql.jdbc.Driver")
.withUsername(parameterTool.get("user"))
.withPassword(parameterTool.get("passwd"))
.build()
)
);
env.execute();
}
} -
项目打包
防止一些依赖缺失,这里使用fatjar的方式进行打包,注意,这里使用了jar-with-dependencies方法进行打包,即将依赖全部打入到相应的jar包中,这样可以防止平台上的flink因为以来缺失问题导致无法使用flink程序。maven相关的设置如下所示:
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-assembly-plugin</artifactId>
<version>3.0.0</version>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>之后通过命令
mvn package
进行打包,注意将打包后带有with-dependencies.jar后缀的jar包留下。以供使用 -
制作镜像,在这里通过官方镜像作为基础镜像进行构建,
使用docker进行镜像生成,使用命令为docker build -t /flink-demo-jar-job:1.0-SNAPSHOT .
FROM apache/flink:1.14.3-scala_2.12
RUN mkdir -p $FLINK_HOME/usrlib
COPY lib $FLINK_HOME/lib/
COPY flink-demo-jar-job-1.0-SNAPSHOT-jar-with-dependencies.jar $FLINK_HOME/usrlib/flink-demo-jar-job-1.0-SNAPSHOT-jar-with-dependencies.jar -
推送镜像
docker push ${docker_repository}/flink-demo-jar-job:1.0-SNAPSHOT
k8s Application运行
Application模式架构
在k8s application模式下,用户只需要通过 Flink Client/CLI 启动作业。首先通过 K8s 启动 JobManager(deployment)的同时启动作业,然后通过 JobManager 内部的 K8sResourceManager 模块向 K8s 直接申请 TaskManager 的资源并启动,最后当 TM 注册到 JM 后作业就提交到 TM。用户在整个过程无需指定 TaskManager 资源的数量,而是由 JobManager 向 K8s 按需申请的。
启动命令
这里我们可以指定一定的运行参数,相关的参数设定方案请参考官方文档https://nightlies.apache.org/flink/flink-docs-release-1.13/zh/docs/deployment/config/#kubernetes
./bin/flink run-application \
--target kubernetes-application \
-Dkubernetes.cluster-id=flink-cluster \
# 指定容器启动的镜像(与之前提交的保持一致)
-Dkubernetes.container.image=****/flink-demo-jar-job:1.0-SNAPSHOT \
-Dkubernetes.jobmanager.replicas=1 \
# 指定容器运行的命名空间
-Dkubernetes.namespace=flink-dev \
-Dkubernetes.jobmanager.service-account=flink-service-account \
-Dkubernetes.taskmanager.cpu=1 \
-Dtaskmanager.memory.process.size=4096mb \
-Dkubernetes.jobmanager.cpu=1 \
-Djobmanager.memory.process.size=4096mb \
-Dkubernetes.rest-service.exposed.type=NodePort \
-Dclassloader.resolve-order=parent-first \
# yaml 模板,为解决hosts映射,后续可以通过编排此yaml文件,实现动态替换启动jar包、配置文件和持久化一些数据
# -Dkubernetes.pod-template-file=/opt/flink-1.14.2/flink-templeta.yaml \
# Main方法
-c cn.ctyun.demo.SinkToMySQL \
# 启动Jar包和启动配置文件的绝对路径(容器内部,不是宿主机)
local:///usr/local/flink/lib/flink-realtime-1.0-SNAPSHOT.jar \
# 如下将提供mysql的连接信息,通过参数的方式传递给jar包
--passwd ****** \
--user ******\
--url ******
PodTemplate
PodTemplate主要是通过指定pod的启动样例,在podtemplate中可以指定域名、挂载路径、配置文件、初始化容器等信息,如下给出一个提供一个持久化保存日志的PodTemplate。
apiVersion: v1
kind: Pod
metadata:
name: jobmanager-pod-template
spec:
initContainers:
- name: artifacts-fetcher
image: artifacts-fetcher:latest
# Use wget or other tools to get user jars from remote storage
command: [ 'wget', 'https://path/of/StateMachineExample.jar', '-O', '/flink-artifact/myjob.jar' ]
volumeMounts:
- mountPath: /flink-artifact
name: flink-artifact
containers:
# Do not change the main container name
- name: flink-main-container
resources:
requests:
ephemeral-storage: 2048Mi
limits:
ephemeral-storage: 2048Mi
volumeMounts:
- mountPath: /opt/flink/volumes/hostpath
name: flink-volume-hostpath
- mountPath: /opt/flink/artifacts
name: flink-artifact
- mountPath: /opt/flink/log
name: flink-logs
# Use sidecar container to push logs to remote storage or do some other debugging things
- name: sidecar-log-collector
image: sidecar-log-collector:latest
command: [ 'command-to-upload', '/remote/path/of/flink-logs/' ]
volumeMounts:
- mountPath: /flink-logs
name: flink-logs
volumes:
- name: flink-volume-hostpath
hostPath:
path: /tmp
type: Directory
- name: flink-artifact
emptyDir: { }
- name: flink-logs
emptyDir: { }
可知,通过如上的配置文件,启动taskmanager、JobManager后将能够提供挂载功能,能够将主容器中存储日志的目录进行挂载,供另一个容器artifacts-fetcher获取并通过其内置脚本command-to-upload实时将日志进行上传。该功能是flink官方提供的一种通过podtemplate方法解决flink中日志持久化问题的一个案例,具体podTemplate的使用需要结合实际需求场景进行调整。