2023-12-02:用go语言,如何求模立方根?
x^3=a mod p,
p是大于等于3的大质数,
a是1到p-1范围的整数常数,
x也是1到p-1范围的整数,求x。
p过大,x不能从1到p-1遍历。
答案2023-12-02:
# 大体步骤如下:
1.判断是否存在模立方根。有0,1,3个根这三种情况。
1.1.求p-1和3的最大公约数gcd(p-1,3)。最后结果要么是1,要么是3。如果是1,那肯定模立方根,但只有1个根。如果是3,进行下一步。
1.2.欧拉判别法。a**[(p-1)/3]==1 mod p。如果等于1,那就有3个根。如果不等于1,那就是0个根。
2.Peralta算法。求y。
2.1.当只有0个根时,直接返回。
2.2.当只有1个根时,a ^ ((p-1)/3) mod p就是答案。
2.3.当有3个根时,这个很难描述,具体见代码。
2.3.1.定义复数乘法和复数的快速幂。这虽然叫复数,但跟传统意义上的复数是不一样的。
2.3.2.确定一个常数r(r>=1并且r<p),使得 x ^ 3=r ^ 3 - a mod p 无根。
2.3.3.确定一个复数根,对这个复数根作复数的快速幂运算,指数是(p^2+p+1)/3,最终结果就是需要的根。
时间复杂度为 O((log p)^3)。
额外空间复杂度为 O(1)。
# go完整代码如下:
```go
package main
import (
"fmt"
"math/big"
)
func main() {
if true {
if false {
p := big.NewInt(0)
p.SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
for c := big.NewInt(20000); c.Cmp(big.NewInt(30000)) <= 0; c.Add(c, big.NewInt(1)) {
fmt.Println("c = ", c, "-------------")
r := ModCbrt(c, p)
fmt.Println("答案:", r)
for i := 0; i < len(r); i++ {
if big.NewInt(0).Exp(r[i], big.NewInt(3), p).Cmp(c) == 0 {
} else {
fmt.Println("答案错误", r[i], ",c = ", big.NewInt(0).Exp(r[i], big.NewInt(3), p))
return
}
}
}
return
}
if true {
p := big.NewInt(0)
p.SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
for c := big.NewInt(20000); c.Cmp(big.NewInt(30000)) <= 0; c.Add(c, big.NewInt(1)) {
fmt.Println("c = ", c, "-------------")
r := ModCbrt(c, p)
fmt.Println("答案:", r)
for i := 0; i < len(r); i++ {
if big.NewInt(0).Exp(r[i], big.NewInt(3), p).Cmp(c) == 0 {
} else {
fmt.Println("答案错误", r[i], ",c = ", big.NewInt(0).Exp(r[i], big.NewInt(3), p))
return
}
}
}
return
}
if true {
p := big.NewInt(997)
for c := big.NewInt(1); c.Cmp(big.NewInt(0).Add(p, big.NewInt(-1))) <= 0; c.Add(c, big.NewInt(1)) {
fmt.Println("c = ", c, "-------------")
r := ModCbrt(c, p)
fmt.Println("答案:", r)
for i := 0; i < len(r); i++ {
if big.NewInt(0).Exp(r[i], big.NewInt(3), p).Cmp(c) == 0 {
} else {
fmt.Println("答案错误", r[i], ",c = ", big.NewInt(0).Exp(r[i], big.NewInt(3), p))
return
}
}
}
}
return
}
fmt.Println("")
}
// 求模立方根的个数0,1,3
func ModCbrtCount(c, p *big.Int) int {
t := big.NewInt(0)
t.Add(p, big.NewInt(-2))
t.Mod(t, big.NewInt(3))
if t.Cmp(big.NewInt(0)) == 0 {
return 1
}
t = big.NewInt(0).Add(p, big.NewInt(-1))
t.Div(t, big.NewInt(3))
if big.NewInt(0).Exp(c, t, p).Cmp(big.NewInt(1)) == 0 {
return 3
} else {
return 0
}
}
// Peralta Method
func ModCbrt(a, p *big.Int) (ans []*big.Int) {
ans = make([]*big.Int, 0)
count := ModCbrtCount(a, p)
if count == 1 { //有1个解
t := big.NewInt(0).Lsh(p, 1)
t.Mod(t, p)
t = t.Add(t, big.NewInt(-1))
t.Mod(t, p)
t.Mul(t, big.NewInt(0).ModInverse(big.NewInt(3), p))
t.Mod(t, p)
ans = append(ans, big.NewInt(0).Exp(a, t, p))
} else if count == 3 { //有3个解,Peralta Method算法
w := big.NewInt(0)
p3 := big.NewInt(0).Add(p, big.NewInt(-1)) //(p-1)/3
p3.Mul(p3, big.NewInt(0).ModInverse(big.NewInt(3), p))
p3.Mod(p3, p)
for i := big.NewInt(1); i.Cmp(p) < 0; i.Add(i, big.NewInt(1)) {
w.Exp(i, p3, p)
if w.Cmp(big.NewInt(1)) != 0 {
break
}
}
var x *big.Int
key := big.NewInt(0)
for x = big.NewInt(1); x.Cmp(p) < 0; x.Add(x, big.NewInt(1)) {
key.Exp(x, big.NewInt(3), p) //key=x^3-a
key.Add(key, big.NewInt(0).Neg(a))
key.Mod(key, p)
if key.Cmp(big.NewInt(0)) != 0 && ModCbrtCount(key, p) == 0 {
break
}
}
r := Ring{x, big.NewInt(0).Add(p, big.NewInt(-1)), big.NewInt(0), key}
pp := big.NewInt(0).Mul(p, p) // pp = (p*p+p+1)/3,注意pp是不能 mod p的,有点反直觉
pp.Add(pp, p)
pp.Add(pp, big.NewInt(1))
pp.Div(pp, big.NewInt(3))
ansr := powerModI(r, pp, p)
ans0 := ansr.a
ans1 := big.NewInt(0)
ans1.Mul(ans0, w)
ans1.Mod(ans1, p)
ans2 := big.NewInt(0)
ans2.Mul(ans1, w)
ans2.Mod(ans2, p)
ans = append(ans, ans0, ans1, ans2)
}
return
}
type Ring struct {
a *big.Int
b *big.Int
c *big.Int
w *big.Int
}
// 复数乘法
func mulI(x Ring, y Ring, p *big.Int) Ring {
var res Ring
res.a = big.NewInt(0)
res.b = big.NewInt(0)
res.c = big.NewInt(0)
res.w = x.w
w := x.w
a1 := big.NewInt(0)
a2 := big.NewInt(0)
a3 := big.NewInt(0)
a1.Mul(x.a, y.a) //x.a*y.a
a1.Mod(a1, p)
a2.Mul(x.b, y.c) //x.b*y.c*key
a2.Mod(a2, p)
a2.Mul(a2, w)
a2.Mod(a2, p)
a3.Mul(x.c, y.b) //x.c*y.b*key
a3.Mod(a3, p)
a3.Mul(a3, w)
a3.Mod(a3, p)
res.a.Add(a1, a2)
res.a.Mod(res.a, p)
res.a.Add(res.a, a3)
res.a.Mod(res.a, p)
b1 := big.NewInt(0)
b2 := big.NewInt(0)
b3 := big.NewInt(0)
b1.Mul(x.a, y.b) //x.a*y.b
b1.Mod(b1, p)
b2.Mul(x.b, y.a) //x.b*y.a
b2.Mod(b2, p)
b3.Mul(x.c, y.c) //x.c*y.c*key
b3.Mod(b3, p)
b3.Mul(b3, w)
b3.Mod(b3, p)
res.b.Add(b1, b2)
res.b.Mod(res.b, p)
res.b.Add(res.b, b3)
res.b.Mod(res.b, p)
c1 := big.NewInt(0)
c2 := big.NewInt(0)
c3 := big.NewInt(0)
c1.Mul(x.a, y.c) //x.a*y.c
c1.Mod(c1, p)
c2.Mul(x.b, y.b) //x.b*y.b
c2.Mod(c2, p)
c3.Mul(x.c, y.a) //x.c*y.a
c3.Mod(c3, p)
res.c.Add(c1, c2)
res.c.Mod(res.c, p)
res.c.Add(res.c, c3)
res.c.Mod(res.c, p)
return res
}
// 复数快速幂,注意b不能取模
func powerModI(a Ring, b, p *big.Int) Ring {
res := Ring{big.NewInt(1), big.NewInt(0), big.NewInt(0), a.w}
for b.Cmp(big.NewInt(0)) != 0 {
if big.NewInt(0).Mod(b, big.NewInt(2)).Cmp(big.NewInt(1)) == 0 {
res = mulI(res, a, p)
}
a = mulI(a, a, p)
b.Rsh(b, 1)
}
return res
}
```