searchusermenu
  • 发布文章
  • 消息中心
点赞
收藏
评论
分享
原创

机器学习之K均值聚类算法

2023-06-28 05:20:57
7
0

K均值聚类算法概述

K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。

K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。

聚类算法与分类算法最大的不同在于,分类的类别是事先已知的,而聚类则不同,因为它产生的结果与分类相同,只是没有预先定义的类别,因此也可称聚类为无监督分类。

K均值聚类算法分析

k-means算法是一种基于样本间相似性度量的间接聚类方法,此算法以k为参数,把n 个对象分为k个簇,以使簇内具有较高的相似度,而且簇间的相似度较低。

相似度的计算根据一个簇中对象的平均值(被看作簇的重心)来进行。此算法首先随机选择k个对象,每个对象代表一个聚类的质心。对于其余的每一个对象,根据该对象与各聚类质心之间的距离,把它分配到与之最相似的聚类中。然后,计算每个聚类的新质心。重复上述过程,直到准则函数会聚。

k-means算法是一种较典型的逐点修改迭代的动态聚类算法,其要点是以误差平方和为准则函数。逐点修改类中心:一个象元样本按某一原则,归属于某一组类后,就要重新计算这个组类的均值,并且以新的均值作为凝聚中心点进行下一次象元素聚类;逐批修改类中心:在全部象元样本按某一组的类中心分类之后,再计算修改各类的均值,作为下一次分类的凝聚中心点。

K均值聚类算法步骤

算法过程如下:

1)从N个文档随机选取K个文档作为质心
2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类
3)重新计算已经得到的各个类的质心
4)迭代2~3步直至新的质心与原质心相等或小于指定阈值,算法结束

具体如下:

输入:k, data[n];
(1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1];
(2) 对于data[0]….data[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i;
(3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数;
(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。

K均值聚类算法使用示例

接下来使用python编写k-means算法例子 首先从文件加载数据集

# 从文本中构建矩阵,加载文本文件,然后处理
def loadDataSet(fileName):    # 通用函数,用来解析以 tab 键分隔的 floats(浮点数),例如: 1.658985	4.285136
    dataMat = []
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float,curLine)    # 映射所有的元素为 float(浮点数)类型
        dataMat.append(fltLine)
    return dataMat

然后计算两个向量的欧氏距离

# 计算两个向量的欧式距离(可根据场景选择)
def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2))) # la.norm(vecA-vecB)

构建一个包含 K 个随机质心的集合

# 为给定数据集构建一个包含 k 个随机质心的集合。随机质心必须要在整个数据集的边界之内,这可以通过找到数据集每一维的最小和最大值来完成。然后生成 0~1.0 之间的随机数并通过取值范围和最小值,以便确保随机点在数据的边界之内。
def randCent(dataSet, k):
    n = shape(dataSet)[1] # 列的数量
    centroids = mat(zeros((k,n))) # 创建k个质心矩阵
    for j in range(n): # 创建随机簇质心,并且在每一维的边界内
        minJ = min(dataSet[:,j])    # 最小值
        rangeJ = float(max(dataSet[:,j]) - minJ)    # 范围 = 最大值 - 最小值
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))    # 随机生成
    return centroids

K-Means 聚类算法

# k-means 聚类算法
# 该算法会创建k个质心,然后将每个点分配到最近的质心,再重新计算质心。
# 这个过程重复数次,直到数据点的簇分配结果不再改变位置。
# 运行结果(多次运行结果可能会不一样,可以试试,原因为随机质心的影响,但总的结果是对的, 因为数据足够相似,也可能会陷入局部最小值)
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    m = shape(dataSet)[0]    # 行数
    clusterAssment = mat(zeros((m, 2)))    # 创建一个与 dataSet 行数一样,但是有两列的矩阵,用来保存簇分配结果
    centroids = createCent(dataSet, k)    # 创建质心,随机k个质心
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        for i in range(m):    # 循环每一个数据点并分配到最近的质心中去
            minDist = inf; minIndex = -1
            for j in range(k):
                distJI = distMeas(centroids[j,:],dataSet[i,:])    # 计算数据点到质心的距离
                if distJI < minDist:    # 如果距离比 minDist(最小距离)还小,更新 minDist(最小距离)和最小质心的 index(索引)
                    minDist = distJI; minIndex = j
            if clusterAssment[i, 0] != minIndex:    # 簇分配结果改变
                clusterChanged = True    # 簇改变
                clusterAssment[i, :] = minIndex,minDist**2    # 更新簇分配结果为最小质心的 index(索引),minDist(最小距离)的平方
        print centroids
        for cent in range(k): # 更新质心
            ptsInClust = dataSet[nonzero(clusterAssment[:, 0].A==cent)[0]] # 获取该簇中的所有点
            centroids[cent,:] = mean(ptsInClust, axis=0) # 将质心修改为簇中所有点的平均值,mean 就是求平均值的
    return centroids, clusterAssment
0条评论
作者已关闭评论
Coding
19文章数
1粉丝数
Coding
19 文章 | 1 粉丝
原创

机器学习之K均值聚类算法

2023-06-28 05:20:57
7
0

K均值聚类算法概述

K-means算法是硬聚类算法,是典型的基于原型的目标函数聚类方法的代表,它是数据点到原型的某种距离作为优化的目标函数,利用函数求极值的方法得到迭代运算的调整规则。

K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大。该算法认为簇是由距离靠近的对象组成的,因此把得到紧凑且独立的簇作为最终目标。

聚类算法与分类算法最大的不同在于,分类的类别是事先已知的,而聚类则不同,因为它产生的结果与分类相同,只是没有预先定义的类别,因此也可称聚类为无监督分类。

K均值聚类算法分析

k-means算法是一种基于样本间相似性度量的间接聚类方法,此算法以k为参数,把n 个对象分为k个簇,以使簇内具有较高的相似度,而且簇间的相似度较低。

相似度的计算根据一个簇中对象的平均值(被看作簇的重心)来进行。此算法首先随机选择k个对象,每个对象代表一个聚类的质心。对于其余的每一个对象,根据该对象与各聚类质心之间的距离,把它分配到与之最相似的聚类中。然后,计算每个聚类的新质心。重复上述过程,直到准则函数会聚。

k-means算法是一种较典型的逐点修改迭代的动态聚类算法,其要点是以误差平方和为准则函数。逐点修改类中心:一个象元样本按某一原则,归属于某一组类后,就要重新计算这个组类的均值,并且以新的均值作为凝聚中心点进行下一次象元素聚类;逐批修改类中心:在全部象元样本按某一组的类中心分类之后,再计算修改各类的均值,作为下一次分类的凝聚中心点。

K均值聚类算法步骤

算法过程如下:

1)从N个文档随机选取K个文档作为质心
2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类
3)重新计算已经得到的各个类的质心
4)迭代2~3步直至新的质心与原质心相等或小于指定阈值,算法结束

具体如下:

输入:k, data[n];
(1) 选择k个初始中心点,例如c[0]=data[0],…c[k-1]=data[k-1];
(2) 对于data[0]….data[n],分别与c[0]…c[k-1]比较,假定与c[i]差值最少,就标记为i;
(3) 对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数;
(4) 重复(2)(3),直到所有c[i]值的变化小于给定阈值。

K均值聚类算法使用示例

接下来使用python编写k-means算法例子 首先从文件加载数据集

# 从文本中构建矩阵,加载文本文件,然后处理
def loadDataSet(fileName):    # 通用函数,用来解析以 tab 键分隔的 floats(浮点数),例如: 1.658985	4.285136
    dataMat = []
    fr = open(fileName)
    for line in fr.readlines():
        curLine = line.strip().split('\t')
        fltLine = map(float,curLine)    # 映射所有的元素为 float(浮点数)类型
        dataMat.append(fltLine)
    return dataMat

然后计算两个向量的欧氏距离

# 计算两个向量的欧式距离(可根据场景选择)
def distEclud(vecA, vecB):
    return sqrt(sum(power(vecA - vecB, 2))) # la.norm(vecA-vecB)

构建一个包含 K 个随机质心的集合

# 为给定数据集构建一个包含 k 个随机质心的集合。随机质心必须要在整个数据集的边界之内,这可以通过找到数据集每一维的最小和最大值来完成。然后生成 0~1.0 之间的随机数并通过取值范围和最小值,以便确保随机点在数据的边界之内。
def randCent(dataSet, k):
    n = shape(dataSet)[1] # 列的数量
    centroids = mat(zeros((k,n))) # 创建k个质心矩阵
    for j in range(n): # 创建随机簇质心,并且在每一维的边界内
        minJ = min(dataSet[:,j])    # 最小值
        rangeJ = float(max(dataSet[:,j]) - minJ)    # 范围 = 最大值 - 最小值
        centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))    # 随机生成
    return centroids

K-Means 聚类算法

# k-means 聚类算法
# 该算法会创建k个质心,然后将每个点分配到最近的质心,再重新计算质心。
# 这个过程重复数次,直到数据点的簇分配结果不再改变位置。
# 运行结果(多次运行结果可能会不一样,可以试试,原因为随机质心的影响,但总的结果是对的, 因为数据足够相似,也可能会陷入局部最小值)
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
    m = shape(dataSet)[0]    # 行数
    clusterAssment = mat(zeros((m, 2)))    # 创建一个与 dataSet 行数一样,但是有两列的矩阵,用来保存簇分配结果
    centroids = createCent(dataSet, k)    # 创建质心,随机k个质心
    clusterChanged = True
    while clusterChanged:
        clusterChanged = False
        for i in range(m):    # 循环每一个数据点并分配到最近的质心中去
            minDist = inf; minIndex = -1
            for j in range(k):
                distJI = distMeas(centroids[j,:],dataSet[i,:])    # 计算数据点到质心的距离
                if distJI < minDist:    # 如果距离比 minDist(最小距离)还小,更新 minDist(最小距离)和最小质心的 index(索引)
                    minDist = distJI; minIndex = j
            if clusterAssment[i, 0] != minIndex:    # 簇分配结果改变
                clusterChanged = True    # 簇改变
                clusterAssment[i, :] = minIndex,minDist**2    # 更新簇分配结果为最小质心的 index(索引),minDist(最小距离)的平方
        print centroids
        for cent in range(k): # 更新质心
            ptsInClust = dataSet[nonzero(clusterAssment[:, 0].A==cent)[0]] # 获取该簇中的所有点
            centroids[cent,:] = mean(ptsInClust, axis=0) # 将质心修改为簇中所有点的平均值,mean 就是求平均值的
    return centroids, clusterAssment
文章来自个人专栏
开发感悟
19 文章 | 1 订阅
0条评论
作者已关闭评论
作者已关闭评论
0
0